Я вывел на монитор изображение равномерно синего фона. Сигнал на монитор идет по hdmi-кабелю с выхода видеокарты. В каком месте там синий цвет?
Вот и я вас спрашиваю, в каком? Где в "совокупности сигналов на нейронах промежуточных слоев глубокой нейросети", как вы пишете, возникает свет, темнота или радость? Чем "сигналы на нейронах промежуточных слоев глубокой нейросети" настолько отличаются от сигналов на "выходах с видеокарт", что в совокупностях первых возникает квалиа? "Совокупность сигналов" - это же количество сигналов? Попробуйте через количество сигналов или вообще какое-нибудь "количество" выразить свет, темноту, боль или удивление.
И вот ещё над чем задумайтесь. Если бы сознание можно было хотя бы в принципе выразить количественно, то, хотя бы в том же принципиальном смысле, количественно можно было бы выразить и мышление (не где-то же конём в вакууме сознание витает отдельно от процесса мышления). Но в таком случае всё наше поведение являлось бы детерминированным, а значит, оказалось бы, что каждый наш поступок был задан ещё в момент рождения вселенной. Это выглядит абсолютно невероятным и никакая вероятностная трактовка развития мира от этой бессмысленной заданности хорошо не спасает. С помощью физики и логики уйти от заданности можно, но ответ будет необычным.
Вот эта нелинейность как раз и обуславливает такой рельеф целевой функции, для которого невозможно сразу угадать, где у нее минимум. У Вас другой вариант ответа? Обязательно напишите, все вместе посмеемся.
Угадать сложно, верно. Но зачем угадывать? Представили задачу, прикинули путь к решению, мысленно провели итерации, если так уж нужно, и выдали на гора нейронную сеть, сразу готовую. Что мешает это сделать? Я же вам этот вопрос задавал? Впрочем, это уже неважно, как вы и просили, мой вариант ответа ниже.
Очевидно если модель печени не моделирует очистку крови, то это плохая модель. Надо перестать её использовать и взять хорошую (если нас интересует очистка крови).
Вы здесь говорите о модели, а речь шла о программе. Если так и было задумано, то программа на флешке, в компьютере. Но флешку в организм вместо печени лучше не вставлять, даже с хорошей программой. Почему же вы считаете, что программа может мыслить? Кровь очищать не может, а мыслить может? По-моему, умение мыслить явно посложнее будет, чем кровь очищать.
Алгоритм, программа - это код, в котором зашифрована реальность в контексте нашего опыта. Естественно, что код сам по себе кровь не очистит и пищу не переварит, для этого на основе кода нужно создавать модель явления "в металле". Но в отношении мышления мы почему-то уверены, что кода достаточно. Если же представить, что само мышление и есть код, и его модель поэтому тоже код, то реальное мышление никаким языком выразить невозможно, никакого языка для этого не хватит. То есть явно не код. В итоге нам останется только обратиться к физике работы мозга, попробовать найти там основания "невыразимости" и, если они там действительно есть, то по домам. К тому же если они есть, то точности виртуальной реальности никогда не хватит для моделирования жизни, а значит, и эволюции. То есть тупик и тут.
Теперь аргументы. Их продолжение в посте ниже. Весь объём (5 стр.) в один пост не влезает, а сокращать, по-моему, неоптимально. Но вообще изложенного в этом посте достаточно, второй пост обобщающий. Речь идёт не только о нейронных сетях, это станет ясно по тексту. О системах из живых нейронов и генной инженерии написано в конце второго поста.
(Осторожно, четыре страницы естественного языка.)
Работа искусственных нейронных сетей не задаётся заранее в точности. Ввиду сложной структуры нейросетевого алгоритма, проследить ход вычислений мысленно невозможно, поэтому конкретные параметры создаваемой сети выбираются более или менее наугад на основании прошлого опыта решения сетями похожих задач и других общих соображений о целесообразности того или иного выбора. После чего сеть обучается. В процессе обучения сеть оптимизируется под решение поставленной задачи — можно сказать, что «грубый» процесс создания нейросетевого алгоритма сменяется «тонкой» подгонкой его под задачу. Процесс обучения тоже во многом интуитивен и результат не гарантирует. Дело обстоит практически так же, как и в отношении человека — работа мозга непонятна, поэтому и верный подход к обучению неизвестен, и результат не гарантирован.
Если работа системы непонятна, то оценить её решения, естественно, можно только «снаружи», по самим решениям, а не в точности понимая, как они возникают. Поэтому искусственной нейронной сети приходится или «верить на слово», или прежде проверять адекватность её решений. Образно говоря, как и в случае человека, мы больше судим нейронную сеть «по делам», чем проверяя ход её «мыслей». Как следствие, в создании нейронных сетей возникает такая составляющая, как отбор. Аналогично естественному отбору искусственные нейронные сети создаются и обучаются более или менее наугад, в процессе чего среда — в данном случае сам человек, как создатель нейронной сети — оставляет те, которые отвечают его нуждам.
При этом, создавая искусственный интеллект, мы так или иначе воссоздаём своё представление о том, что мы хотим от искусственного интеллекта. Очевидно, что сложность этого представления ограничена нашим нынешними знаниями. Таким образом, наша способность «отбирать», то есть отделять адекватные системы от не адекватных, неизменно ограничена нашими нынешними знаниями.
Но очевидно, что наши нынешние знания — это далеко не все потенциально возможные знания. Однако создать мы должны нейронную сеть, которая потенциально может знать всё, что потенциально можем знать мы. Другими словами, мы должны создать такую нейронную сеть, возможное богатство поведения которой равно возможному богатству поведения человека, при том, что оценить богатство поведения мы можем, только исходя из известного о нём сейчас — ни сложность, ни объём каковых знаний не равны максимально возможным. Получается, нужно прыгнуть выше головы, создать то, неизвестно что — для создания искусственного интеллекта хотя бы только равной себе сложности уже потребуется знать больше, чем известно. Причём учитывая, что приближение к максимально возможному знанию бесконечно, то и знать больше, чем в принципе может быть известно за любой конечный промежуток времени.
Посмотрим на сказанное с другого ракурса. Исследуя мозг, мы выдвигаем гипотезу в отношении работы мозга и проверяем её, наблюдая за его работой, то есть наблюдая за поведением самих себя. Создавая искусственные нейронные сети, мы выдвигаем гипотезу в отношении устройства сети и проверяем её, опять же сравнивая поведение создаваемой системы со своим поведением, со своими задачами и их решениями. Таким образом, и изучение естественного интеллекта, и создание интеллекта искусственного одинаково требует всё более глубокого понимания своего поведения.
Но понимание своего поведения равносильно пониманию своего мышления, которое сколько-нибудь точно понять невозможно. Прямой алгоритм мышления не имеет смысла, так как в этом случае выводимыми становятся все утверждения, которые только можно сформулировать, включая противоположные или о ложности самого алгоритма мышления. Но именно прямой алгоритм есть суть понимания: явление изучено, если оно предсказуемо, то есть установлена ясная однозначная связь между начальными условиями и течением явления. И так как в случае мышления это невозможно, то поведение в той же степени непознаваемое, как и мышление. Но это значит, что для создания искусственного интеллекта равного интеллекту человека действительно потребуется выйти за рамки познаваемого. Но за рамками познаваемого оценить нельзя ничего, никакой «отбор» за этими рамками невозможен, адекватные системы будет невозможно отделить от не адекватных.
Иными словами, по мере приближения сложности создаваемых систем к сложности интеллекта человека будет необходимо всё более глубокое познание того, что ни за какой конечный промежуток времени познано быть не может — всего возможного богатства поведения человека. Эта зависимость говорит о том, что по мере приближения создаваемых систем к сложности интеллекта своего создателя их усложнение будет идти всё медленнее и медленнее и в конечном итоге оно будет всегда ограничено некоторым уровнем от нынешних знаний. Сложность искусственного интеллекта всегда будет ограничивать непознаваемость явления, которое в нём предполагается воплотить — интеллекта человека.
Проверим, как это ограничение будет выглядеть на практике.
Чем сложнее становятся создаваемые системы, тем сложнее становятся и решаемые ими задачи. Но сложные задачи — это и важные задачи, а значит, чем сложнее система, тем больше возможный вред от её ошибок. К примеру, даже обычная диалоговая нейронная сеть по типу более продвинутой Алисы или Сири, призванная в том числе для ни к чему не обязывающих бесед, за рамками проверенных разработчиками вопросов и ответов может посоветовать пользователю что-то опасное, неадекватное. Но не каждый сможет неадекватность распознать и не все вопросы можно задать заранее. Надо заметить, это уже реальная проблема, возникающая в разработке таких систем. Обучаясь в сети Интернет, они затем дезинформируют предполагаемого пользователя, так как в интернете широко представлена в том числе и разного рода ложная информация, несерьёзная, оскорбительная, требующая тонкого понимания контекста и знаний, которым сложно научиться на примерах из интернета. Не исправляют ситуацию специально подобранные примеры, например, огромные массивы различных проверенных текстов, так как из текстов в любом случае невозможно вынести то общее понимание смысла своих действий, которое так или иначе задаёт адекватность поведения во всех частных ситуациях.
Как кажется, очевидный выход — это усложнение нейронных сетей. Тогда обучить их можно будет большему, а значит, они смогут воспринимать мир в большем многообразии причин и следствий. Но, не говоря о технических проблемах, чем сложнее становятся нейронные сети и потому потенциально шире область их возможного применения, тем стремительнее будет расти важность их проверки во всех условиях, где сеть потенциально может быть использована, так как за рамками проверенных её решения всегда могут быть опасны. Причём, так как речь идёт о системах обучающихся, которые могут стать неадекватными уже в процессе использования, то в идеале проверять нейронную сеть требуется не только во всех возможных условиях, но и по-разному обученные.
Однако, стремительно уменьшая возможности этой проверки, чем сложнее становятся создаваемые наугад системы, тем больше их возможных вариантов, а поведение этих вариантов становится всё богаче — аналогично богатству поведения человека. В том числе богаче стратегическими решениями, которые уже в принципе невозможно проверить сколько-нибудь быстро. Но стратегические решения — это и стратегические последствия, их важность очень высока.
В результате, получается, что когда отследить и исправить неадекватность нейронной сети стало сложно, тогда, чтобы сеть могла стать более адекватной за счёт большего объёма опыта, мы решили её усложнить, но оказалось, что необходимость проверки от этого не только не уменьшилась, а она стала ещё более необходимой, при том, что осуществить её, наоборот, стало намного труднее.
Таким образом, по мере усложнения нейронных сетей всё быстрее будет расти количество их возможных вариантов. Одновременно будет всё богаче становиться поведение сетей, тем самым требуя всё больше времени для его проверки, при этом важность этой проверки будет становиться всё выше, а критерий оценки — наше собственное поведение — будет всё менее понятен. Ситуаций, в которых нужно проверить сеть, чтобы оценить её адекватность, будет уже не просто много — они будут становиться всё более сложными, многоплановыми и в конечном счёте всё более неопределёнными. Верный выход из них будет всё труднее сформулировать, сами ситуации всё труднее конкретизировать, найти, представить. В результате проверить поведение сетей будет возможно только всё более и более фрагментарно, аналогично тому, как неполно и неточно мы можем оценить поведение других людей в каком-либо тесте или опросе.
Однако, если говорить о людях, то за рамками проверенного мы всё равно можем рассчитывать на адекватность других людей — и не просто потому, что в каждом из нас заключён опыт миллиардов лет биологической эволюции, а потому что стремление к самосохранению и размножению встроено в любую жизнь ещё на физическом уровне. Такая поведенческая однонаправленность определяет значительную общность всех людей — их мнений, целей, интересов, а также понимание чужих поступков, возможность их предвидеть, различать намерения, легко этому обучаться. И даже не только людей, по тем же причинам общности нам также понятно и поведение животных. Поэтому если у человека склонность к серьёзной неадекватности можно заметить по множеству внешних признаков, то в отношении искусственных нейронных сетей ни на что из этого рассчитывать нельзя. В отсутствие понимания работы системы и общности этой работы с собой, сколько-нибудь достоверная экстраполяция поведения системы в проверенных ситуациях на ситуации ещё не проверенные невозможна.
В итоге, как непосредственное проявление указанной ранее необходимости «прыгнуть выше головы», знать больше, чем известно, на практике мы будем наблюдать, что задолго до приближения искусственных нейронных сетей к сложности интеллекта человека сочетание стремительно растущего количества возможных вариантов сетей и столь же стремительно уменьшающаяся возможность оценить их адекватность приведёт к тому, что дальнейшая разработка искусственного интеллекта потеряет всякий смысл, так как время практической реализации каждого нового усложнения будет всё стремительнее расти к бесконечности.
Теперь посмотрим на обнаруженные нами зависимости более внимательно.
Искусственные нейронные сети нам нужны в тех случаях, когда сложно решить задачу прямым путём. Другими словами, на практике искусственные нейронные сети позволяют решать задачи более сложные, чем те, которые можно решить прямыми средствами, точно и однозначно задав порядок переработки данных в результат.
Но за счёт чего у сетей появляются такие возможности? За счёт растущего непонимания их работы, неоднозначности результатов этой работы, увеличения доли случайного выбора, то есть за счёт роста неопределённости. Но почему рост неопределённости позволяет решать более сложные задачи?
Прямой алгоритм мышления не имеет смысла, поэтому прямыми средствами искусственный интеллект, равный сложности человека, создать нельзя, это невозможно в принципе. На практике это ограничение будет проявляться в том, что усложнение прямых алгоритмов и, соответственно, решение всё более сложных задач будет требовать всё больших усилий, и в конечном итоге выгода от прироста сложности алгоритмов перестанет усилия по их созданию оправдывать. Тогда, если прямых — понятных и однозначных — средств уже не осталось, остаётся только рассмотреть средства не прямые — непонятные и неоднозначные. Надежда теперь может быть только на них, потому что какого-либо третьего варианта решения задач попросту нет. И действительно, мы видим, что на практике возможности искусственных нейронных сетей по крайней мере в некоторых задачах выше.
Но всё это происходит за счёт роста неопределённости, то есть за счёт роста объёма непонятного и неоднозначного в работе, устройстве и оценке результатов работы создаваемых систем. В свою очередь, неопределённость в понимании того, как конкретно система приходит к тому или иному решению, приводит к появлению отбора. Вместо мысленного «отбора» верного пути к решению ещё до или во время написания алгоритма, как это происходит в случае прямого алгоритма решения задачи, в случае нейронных сетей отбор происходит по итогам работы алгоритма — решила искусственная нейронная сеть задачу или нет.
Но ведь возможности нашего «отбирающего» мозга от этого не увеличиваются. Поэтому то, что всё сложнее становится написать прямой алгоритм решения, означает и то, что всё труднее становится отличить верное решение от неверного, если они будут предъявлены уже готовыми, как результат работы сети. Поэтому так же, как всё труднее становится сформулировать прямой алгоритм, в той же степени растут трудности отбора алгоритмов не прямых — вариантов систем становится всё больше, отделить адекватный вариант системы от неадекватного становится всё труднее, это требует всё больше времени.
При этом в связи с ростом возможностей систем и цена их ошибок тоже становится всё выше, поэтому параметры отбора приходится формулировать всё точнее, строже. Но это равносильно всё большему пониманию работы системы, то есть приближению не прямого алгоритма обратно к прямому — к тому, от которого мы, наоборот, хотели уйти. Другими словами, по мере приближения сложности создаваемых систем к сложности интеллекта человека рост неопределённости будет всё больше требовать роста определённости. Но «определённость» — это суть прямой алгоритм. Тем самым рост сложности будет тормозить сам себя. Как следствие, усложнение и не прямых решений тоже начнёт всё быстрее и быстрее терять смысл.
Таким образом, уменьшение в нейронных сетях одного ограничивающего параметра — необходимости точно представлять алгоритм работы системы, который ограничивает сложность прямых алгоритмов, фактически всего лишь приводит к взаимосвязанному увеличению сразу целого набора других ограничивающих параметров, в том числе самого же этого параметра в новом виде — в виде растущей необходимости всё точнее представлять критерии отбора при одновременном росте богатства поведения. В результате время каждого нового усложнения систем будет всё быстрее расти к бесконечности, и в итоге их усложнение потеряет всякий смысл задолго до сколько-нибудь близкого приближения к сложности интеллекта человека.
Вспомним ещё раз, что прямой алгоритм — это не только путь от данных к решению, это ещё и выражение понимания, точного, однозначного знания. Но прямой алгоритм мышления не имеет смысла, то есть он не просто сложен, а именно невозможен, не может существовать. Что в точности равносильно принципиальному отсутствию сколько-нибудь ясного представления о системе, которая сможет выразить всю сложность мышления, то есть равносильно отсутствию определённости — и, таким образом, неопределённости — по всем параметрам создаваемых систем по мере их приближения к сложности интеллекта человека. В результате возникают все те растущие сложности и ограничения, описанные выше. Например, точно так же что-то более или менее общее о работе мозга сказать можно, но чем глубже мы пытаемся понять мышление, тем больших усилий это требует. Всё известное о мышлении далеко от реальной сложности явления, однако только модель равной сложности имеет в данном случае смысл.
Таким образом, мы показали, что, по всей видимости, принципиальным пределом сложности искусственных нейронных сетей, создаваемых человеком, является сложность интеллекта самого человека, как их создателя. Этот вывод не имеет точного количественного выражения и не обладает математической строгостью — таковое в любом случае невозможно, и не имеет экспериментального подтверждения — оно отнимет вечность, и потому он может показаться недостаточно убедительным. Однако даже если указанные закономерности в точности существуют и всё сказанное верно, никаким более доказательным образом сформулировать их всё равно не представляется возможным.
Продолжение в следующем посте.
-- 29.11.2022, 23:55 --Продолжение хочет вставиться в этот пост, где места уже нет. Ладно, потом.