2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Найти плотность распределения случайной величины
Сообщение17.11.2022, 01:29 
Доброго времени суток! Имеется следующая задача:

Случайная величина $\xi$ имеет непрерывную функцию распределения $F(x)$. В результате $n$ независимых наблюдений над $\xi$ получены следующие значения $x_1<x_2<...<x_n$, упорядоченные по величине. Найти плотность распределения величины $\eta = \frac{F(x_n)-F(x_2)}{F(x_n)-F(x_1)}$

Подскажите, пожалуйста, где можно подсмотреть принцип решения.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение17.11.2022, 08:42 
Аватара пользователя
В порядке первой подсказки - а какова плотность случайной величины $F(\xi)$?

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение17.11.2022, 17:21 
Цитата:
какова плотность случайной величины $F(\xi)$?


Пусть случайная величина $\eta = F_\xi(\xi)$. Тогда
$F_\eta(y) = P(F_\xi(\xi)<y)  = P(\xi<F_\xi^{-1}(y)) = F_\xi(F_\xi^{-1}(y)) = y$
Плотность равна $1$ и равномерна распределена в интервале $(0,1)$.

-- 17.11.2022, 16:50 --

Мне для начала хотелось бы понять какая функция распределения у случайной величины $\eta = F_\xi(x_2)$. Тут я рассуждаю так:
$F_\eta(y) =P(F_\xi(x_2)<y) = P(x_2<F_\xi^{-1}(y)) = \binom{n}{2}P(\xi<F_\xi^{-1}(y))^2P(\xi>F_\xi^{-1}(y))^{n-2} =  \binom{n}{2}F_\xi(F_\xi^{-1}(y))^{2}(1-F_\xi(F_\xi^{-1}(y)))^{n-2} = \binom{n}{2}y^2(1-y)^{n-2}$,
где $0<y<1$.
Но тогда $F_\eta(1)-F_\eta(0) = 0$, и стало быть функция распределения найдена неверно.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение17.11.2022, 18:18 
Аватара пользователя
upjump в сообщении #1570315 писал(а):
$\binom{n}{2}P(\xi<F_\xi^{-1}(y))^2P(\xi>F_\xi^{-1}(y))^{n-2}$
Это вероятность того, что $x_2 < F_\xi^{-1}(y)$ И $x_3 > F_\xi^{-1}(y)$. Вам же второе условие не нужно (но просто отбросить соответствующий множитель тоже нельзя, слишком много выкинете).

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение17.11.2022, 19:59 
mihaild
ага, точно. Тогда так:

$P(x_2<F_\xi^{-1}(y))=1-(P(x_1<F_\xi^{-1}(y))P(x_2>F_\xi^{-1}(y))+P(x_1>F_\xi^{-1}(y))) = 1 - ny(1-y)^{n-1}-(1-y)^n$

-- 17.11.2022, 19:47 --

Я вижу два варианта решения:
1. Нужно обозначить за случайные величины $\zeta = F(x_n), \gamma = F(x_1), \psi = F(x_2)$ и найти плотность для случайной величины $\eta=\frac{\zeta - \psi}{\zeta-\gamma}$. Этот вариант кажется трудоемким.

2. $\frac{F(x_n)-F(x_2)}{F(x_n)-F(x_1)}$ - это вероятность того, что $x_2<\xi<x_n$ при условии что $x_1<\xi<x_n$. Тогда $\eta = F_\mu(x_2)$, где $x_1<x_2<x_n$, но я не могу сообразить как выразить случайную величину $\mu$.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение18.11.2022, 12:19 
Аватара пользователя
Первый вариант не учитывает, что они зависимы.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение18.11.2022, 12:54 
Аватара пользователя
Как минимум можно заметить, что непрерывные монотонные преобразования $\xi$ ничего не меняют, и считать распределение равномерным на $\[0, 1\]$$F$, соответственно, тождественной). Дальше можно разбить единичный куб на $n!$ участков в зависимости от того, как упорядочены значения в экспериментах, заметить, что ожидание на каждом участке одинаковое, и его (вроде, я до конца не довел) вполне можно посчитать.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение19.11.2022, 15:56 
Цитата:
ожидание на каждом участке одинаковое

Мат. ожидание в моем случае, к сожалению, еще не вводилось.

Цитата:
Первый вариант не учитывает, что они зависимы.

Ваша правда.


Сообразил такое решение:

$F_\eta(y) = P(\frac{P_\xi(x_n)-P_\xi(x_2)}{P_\xi(x_n)-P_\xi(x_1)}<y) = P(P(x_2<\xi<x_n | x_1<\xi<x_n)<y) = P(P(x_2<\theta<x_n | x_1<\theta<x_n)<y) = P(\frac{F_\theta(x_n)-F_\theta(x_2)}{F_\theta(x_n)-F_\theta(x_1)}<y)=P(1-F_\theta(x_2)<y)=P(x_2>F^{-1}_\theta(1-y))=P(\theta>F^{-1}_\theta(1-y))^{n-2}=y^{n-2}$

где $\theta$ какая-то случайная величина, лежащая в интервале $(x_1,x_n)$.

Плотность соответсвенно равна $(n-2)y^{n-3}$, где $0<y<1$ и $n>2$.

Похоже на правду, или я где-то вру?

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение19.11.2022, 19:00 
Аватара пользователя
Задачка довольно непростая, могу предложить ее лобовое решение.

Пусть $X_1$, $X_2$, ..., $X_n$ - выборка из непрерывного распределения $F(x)$, а $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$ -- порядковые статистики. Воспользуемся двумя известными фактами, до которых автор темы и так уже дошел:

1. $U_k = F(X_k)$ - равномерно распределенные на $[0,1]$ случайные величины

2. $F(X_{(k)})=U_{(k)}$, где $U_{(k)}$ - порядковые статистики из равномерного на $[0,1]$ распределения.

Тогда $$\mathbb{P}\left(\frac{U_{(n)}-U_{(2)}}{U_{(n)}-U_{(1)}} < x\right)=\int_0^1\int_0^1\int_0^1\,\mathcal{I}\left(\frac{u_n-u_2}{u_n-u_1}<x\right)f_{U_{(1)},U_{(2)},U_{(n)}}(u_1,u_2,u_n)\,du_1du_2du_n,$$ где $\mathcal{I}(\cdot)$ -- индикаторная функция (равна единице, если условие внутри выполнено, и нулю, иначе), а $f_{U_{(1)},U_{(2)},U_{(n)}}(u_1,u_2,u_n)$ -- плотность совместного распределения $U_{(1)},U_{(2)},U_{(n)}$.

Для расчета плотности $f_{U_{(1)},U_{(2)},U_{(n)}}(u_1,u_2,u_n)$ можно воспользоваться вот таким приемом:
$$f_{U_{(1)},U_{(2)},U_{(n)}}(u_1,u_2,u_n)=\lim\limits_{\varepsilon_1,\varepsilon_2,\varepsilon_n\to0}\frac{\mathbb{P}(U_{(1)}\in[u_1,u_1+\varepsilon_1),U_{(2)}\in[u_2,u_2+\varepsilon_2),U_{(n)}\in[u_n,u_n+\varepsilon_n))}{\varepsilon_1\varepsilon_2\varepsilon_n}$$
и вычислить вероятность в числителе с точностью до $\varepsilon_1\varepsilon_2\varepsilon_n$ (один элемент выборки из $n$ должен попасть в промежуток $[u_1,u_1+\varepsilon_1)$, один - в промежуток $[u_2,u_2+\varepsilon_2)$, один - в промежуток $[u_n,u_n+\varepsilon_n)$, а все остальные - в промежуток $[u_2+\varepsilon_2,u_n)$.

Еще один способ вычисления этой плотности - через совместную плотность всех порядковых статистик $U_{(1)}$, $\dots$, $U_{(n)}$, которая равна
$$f_{U_{(1)},\dots,U_{(n)}}(u_1\le\dots\le u_n)=n!\cdot\mathcal{I}(u_1\le\dots\le u_n),$$ нужно только проинтегрировать ее по переменным $u_3$, ..., $u_{n-1}$ и заметить, что объем симплекса равен объему куба, деленному на факториал размерности пространства (числа сторон куба).

Подставляем эту функцию в интеграл выше и вычисляем интеграл. На этом этапе нужно будет избавиться от индикаторных функций, расставив пределы интегрирования у каждой переменной. После этого интеграл считается элементарно.

-- Сб ноя 19, 2022 19:12:36 --

upjump в сообщении #1570462 писал(а):
Сообразил такое решение:

Ни одно равенство в написанном Вами мне не понятно. Вообще вероятность -- детерминированная величина, а она у Вас стоит под другой вероятностью и как будто является случайной величиной.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение19.11.2022, 19:12 
Аватара пользователя
upjump в сообщении #1570462 писал(а):
Мат. ожидание в моем случае, к сожалению, еще не вводилось.
Пардон, распределение тоже одинаковое. Т.е. достаточно посчитать интеграл от $1$ по участку $0 < x_1 < x_2 < \ldots < x_n < 1$, пересеченному с участком $\frac{x_n - x_2}{x_n - x_1} < y$ и домножить его на $n!$.
upjump в сообщении #1570462 писал(а):
$P(\frac{P_\xi(x_n)-P_\xi(x_2)}{P_\xi(x_n)-P_\xi(x_1)}<y) = P(P(x_2<\xi<x_n | x_1<\xi<x_n)<y)$
Вот этот переход непонятен.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение19.11.2022, 19:40 
Цитата:
Вот этот переход непонятен.


Я имел в виду, что $\frac{P_\xi(x_n)-P_\xi(x_2)}{P_\xi(x_n)-P_\xi(x_1)}$ это ведь тоже, что вероятность того, что $\xi$ примет значение в промежутке между $x_n$ и $x_2$ при условии, что $\xi$ приняло значение в промежутке между $x_n$ и $x_1$.

-- 19.11.2022, 19:12 --

ShMaxG
Спасибо за подробное решение, попробую понять его, после того как пойму что такое порядковые статистики. Они еще не были определены в учебнике.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение19.11.2022, 21:21 
Аватара пользователя
upjump
Грубо говоря, порядковые статистики - это упорядоченная выборка. Это Ваши $x_1<x_2<\dots<x_n$ из стартового сообщения. В своем сообщении я использовал общепринятое обозначение -- скобочки в индексах, чтобы отличать их от элементов исходной (неупорядоченной) выборки.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение19.11.2022, 22:30 
Цитата:
$$$\mathbb{P}\left(\frac{U_{(n)}-U_{(2)}}{U_{(n)}-U_{(1)}} < x\right)=\int_0^1\int_0^1\int_0^1\,\mathcal{I}\left(\frac{u_n-u_2}{u_n-u_1}<x\right)f_{U_{(1)},U_{(2)},U_{(n)}}(u_1,u_2,u_n)\,du_1du_2du_n,$$$


если я правильно понял, то должно получиться:
$n(n-1)(n-2)\int\limits_{0}^{1}\int\limits_{0}^{1}\int\limits_{0}^{1}  \mathcal{I}(\frac{u_n-u_2}{u_n-u_1}<x)p(u_1)p(u_2)p(u_n)(F(u_n)-F(u_2))^{n-3} du_1du_2du_n$,
где p - плотность распределения.
Стыдно признаться, но я не знаю как найти этот интеграл, в частности не понятно как интегрировать индикатор.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение19.11.2022, 22:38 
Аватара пользователя
upjump
Да, почти, внутрь интеграла вам нужно еще добавить $\mathcal{I}(u_1 < u_2 < u_n)$. А еще $U_k$ - это равномерно распределенные случайные величины, поэтому ваши $p(u_k)=1$ и $F(u_k)=u_k$, причем эта $F$ это не та $F$ из вашего стартового поста.
upjump в сообщении #1570507 писал(а):
Стыдно признаться, но я не знаю как найти этот интеграл, в частности не понятно как интегрировать индикатор.
Индикатор равен нулю, когда условие внутри не выполнено, и единице, когда выполнено. Нужно понять, как изменить для переменных интервалы интегрирования, чтобы индикаторы всегда были равны 1. Приведу простой пример:
$$\int\limits_0^1\int\limits_0^1 \mathcal{I}(x<y)\,dxdy=\int\limits_0^1\left(\int\limits_0^y\,dx\right)dy=\int\limits_0^1 y \,dy=\frac{1}{2}.$$
Учить расставлять пределы интегрирования, когда есть несколько сложно связанных переменных, учат на матанализе, когда проходят кратные интегралы по областям.

 
 
 
 Re: Найти плотность распределения случайной величины
Сообщение19.11.2022, 23:02 
Цитата:
внутрь интеграла вам нужно еще добавить $\mathcal{I}(u_1 < u_2 < u_n)$

а почему еще один индикатор появляется? Вроде получается так

$f_{U_{(1)},U_{(2)},U_{(n)}}(u_1,u_2,u_n) = $

$\binom{n}{1}P(u_1< \xi <u_1+\varepsilon)  \binom{n-1}{1}P(u_2< \xi <u_2+\varepsilon)  \binom{n-2}{1}P(u_n< \xi <u_n+\varepsilon) P(u_2+\varepsilon < \xi <u_n)^{n-3}=$

$n(n-1)(n-2)p(u_1)p(u_2)p(u_n)(F(u_n)-F(u_2))$


Цитата:
А еще $U_k$ - это равномерно распределенные случайные величины, поэтому ваши $p(u_k)=1$

точно!

Цитата:
$F$ это не та $F$ из вашего стартового поста

Я полагал, что это $F$ по случайной величине $\xi$. А у Вас по какой величине?

 
 
 [ Сообщений: 36 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group