2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5  След.
 
 Простые основы утверждения Пьера Ферма.
Сообщение28.10.2022, 18:15 


08/09/07

71
Калининград
Простые основы утверждения Пьера Ферма.
Три базовых принципа доказательства теоремы.
Первый: Уравнение квадратов сторон прямоугольного треугольника: $A^2 + B^2 = C^2$; (где $A$; $B$; $C$, натуральные числа) справедливо для всякого треугольника, вписанного в окружность, стороны которого опираются на концы её диаметра $C$ > 0 и до бесконечности, а точка пересечения его сторон принадлежит этой окружности. Квадрат диаметра такой окружности $C^2$, соответственно, является и квадратом гипотенузы вписанного прямоугольного треугольника.
Второй: Выполняемое равенство $A^2 + B^2 = C^2$; где $A^2$; $B^2$; и $C^2$ — натуральные положительные числа, которые можно рассматривать как $A^2 = Q$; $B^2 = R$; и $C^2 = D$ отвечающие теореме Пифагора о прямоугольных треугольниках со сторонами $\sqrt{Q} = A; \sqrt{R} = B; \sqrt{D} = C$. Отсюда, выполняемое равенство вида $Q + R = D$ образованное тремя целыми положительными величинами всегда можно представить как равенство Пифагора для прямоугольных треугольников:
$Q + R = D$ $\to$ $\sqrt{Q} \sqrt{Q} + \sqrt{R} \sqrt{R} = \sqrt{D} \sqrt{D}$;
Третий: Квадраты сторон подобного (т.е.,с идентичными углами при гипотенузе) прямоугольного треугольника $A^2 + B^2 = C^2$ большего размера, представляет собой аналогичное равенство все члены которого $A^2$; $B^2$ и $C^2$, умножены на $N$ коэффициент кратности квадрата диаметра окружности, в которую вписан данный больший прямоугольный треугольник $NA^2 + NB^2 = NC^2$; где ($N$ > 0) ), это свойство основано на пропорциональности сторон подобных прямоугольных треугольников.
Следовательно: Предполагаемое тождество одинаковых n - степеней $A^n + B^n = C^n$; если оно выполняется, то, как квадратное равенство $\sqrt{A^n} \sqrt{A^n} + \sqrt{B^n} \sqrt{B^n} = \sqrt{C^n} \sqrt{C^n}$; где (n > 2), (2 + f = n – целое число), должно отвечать уравнению $A^2 + B^2 = C^2$ в квадратных значениях Пифагоровых троек взаимно простых чисел. То есть (в рассматриваемом случае), приводиться к нему в целых квадратных степенях $A^2$;  $B^2$; $C^2$. путем деления всех членов уравнения на коэффициент кратности квадрата диаметра окружности в которую вписывается данный предположительно прямоугольный треугольник.
Отсутствие вышеуказанной принадлежности полностью исключает существование такого равенства.
Доказательство.
$A^n + B^n = C^n$; $\to$ $A^n + B^n = C^fC^2$; 2 + f = n; f > 0 – целое число. Здесь $C^f$ - коэффициент кратности квадрата катета $C^2$, и соответственно квадрата диаметра окружности, в которую вписывается предполагаемый прямоугольный треугольник $\sqrt{A^n} \sqrt{A^n} + \sqrt{B^n}\sqrt{B^n} = \sqrt{C^n} \sqrt{C^n}$.
$(\frac{A^n}{C^f}) + (\frac{B^n}{C^f}) = (\frac{C^n}{C^f})$; $\to$
$(\frac {A^f} {C^f}) A^2 + (\frac {B^f} {C^f})B^2 = (\frac {C^f} {C^f})C^2$; $\to$
$(\frac {A^f}{C^f})A^2$ < $A^2$; $(\frac {B^f}{C^f})B^2$ < $B^2$; $\to$
$(\frac {A^f}{C^f})A^2 + (\frac {B^f}{C^f})B^2 \ne C^2$; $\to$
$\sqrt{A^n} \sqrt{A^n} + \sqrt{B^n}\sqrt{B^n} \ne \sqrt{C^n} \sqrt{C^n}$ $\to$
$A^n + B^n \ne C^n$
Предполагаемое тождество $A^n + B^n = C^n$ не является выполняемым равенством $A^n + B^n \ne C^n$ при любых целых показателях степеней n > 2.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение28.10.2022, 18:42 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
VladStro в сообщении #1568031 писал(а):
$(\frac {A^f}{C^f})A^2$ < $A^2$; $(\frac {B^f}{C^f})B^2$ < $B^2$; $\to$
$(\frac {A^f}{C^f})A^2 + (\frac {B^f}{C^f})B^2 \ne C^2$; $\to$
Как минимум этот переход не обоснован.

(а вообще тут нигде целочисленность решения не используется, поэтому выкладки можно и не читать)

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение28.10.2022, 18:53 


08/09/07

71
Калининград
Ну если не читать, то конечно да.
Предполагаемое тождество одинаковых n - степеней $A^n + B^n = C^n$; если оно выполняется, то, как квадратное равенство $\sqrt{A^n} \sqrt{A^n} + \sqrt{B^n} \sqrt{B^n} = \sqrt{C^n} \sqrt{C^n}$; где (n > 2), (2 + f = n – целое число), должно отвечать уравнению $A^2 + B^2 = C^2$ в квадратных значениях Пифагоровых троек взаимно простых чисел. То есть (в рассматриваемом случае), приводиться к нему в целых квадратных степенях $A^2$; $B^2$; $C^2$. путем деления всех членов уравнения на коэффициент кратности квадрата диаметра окружности в которую вписывается данный предположительно прямоугольный треугольник.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение28.10.2022, 19:19 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
VladStro в сообщении #1568038 писал(а):
Предполагаемое тождество одинаковых n - степеней $A^n + B^n = C^n$; если оно выполняется, то, как квадратное равенство $\sqrt{A^n} \sqrt{A^n} + \sqrt{B^n} \sqrt{B^n} = \sqrt{C^n} \sqrt{C^n}$; где (n > 2), (2 + f = n – целое число), должно отвечать уравнению $A^2 + B^2 = C^2$ в квадратных значениях Пифагоровых троек взаимно простых чисел
Нет, не должно. Пифагоровой тройкой могла бы быть $\sqrt{A^n}, \sqrt{B^n}, \sqrt{C^n}$ (только это совсем не обязательно целые числа).
А то я так тоже могу: уравнение $A + B = C$ положительных решений не имеет, т.к. если к нему добавить $A^2 + B^2 = C^2$, то у полученной системы будут решения только вида $A = C, B = 0$ и $B = C, A = 0$.
Это ровно первый из упомянутых мной в «Популярные способы доказательства» способов.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение28.10.2022, 20:14 


08/09/07

71
Калининград
А то я так тоже могу: уравнение $A + B = C$ положительных решений не имеет, т.к. если к нему добавить $A^2 + B^2 = C^2$, то у полученной системы будут решения только вида $A = C, B = 0$ и $B = C, A = 0$.
Но я ничего и нигде не прибавил, просто этим уравнением $\sqrt{A^n} \sqrt{A^n} + \sqrt{B^n} \sqrt{B^n} = \sqrt{C^n} \sqrt{C^n}$; хотел показать что рассматриваю $A^n + B^n = C^n$; как прямоугольный треугольник, то есть как предположительно выполняемое равенство. Если условие приведения к формуле Пифагора в целых квадратных степенях не соблюдается, то и равенства в выражении нет.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение28.10.2022, 20:22 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
А почему оно должно быть прямоугольным треугольником?

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение28.10.2022, 21:00 


08/09/07

71
Калининград
Потому, что это равенство вида $Q + R = D$ $\to$ $\sqrt{Q} \sqrt{Q} + \sqrt{R} \sqrt{R} = \sqrt{D} \sqrt{D}$; которое и рассматривается как прямоугольный треугольник вписанный в окружность для того, чтобы подтвердить, или исключить выполнение равенства в выражении. То есть попытка приведения к формуле Пифагора в целых квадратных степенях и покажет наличие или отсутствие равенства.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение29.10.2022, 00:58 


08/09/07

71
Калининград
$A^n + B^n = C^n$; $\to$ $A^n + B^n = C^fC^2$; 2 + f = n; f > 0 – целое число. Здесь $C^f$ - коэффициент кратности квадрата гипотенузы $C^2$. То есть, при наличии целого квадрата гипотенузы (или квадрата окружности, в которую может быть вписан предположительно прямоугольный треугольник) с коэффициентом кратности при этой величине, тем не менее, нет вариантов приведения квадратов катетов к целым величинам. Следовательно, равенство не выполняется, поскольку не может быть приведено к уравнению Пифагора вида: $NA^2 + NB^2 = NC^2$.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение29.10.2022, 02:02 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
VladStro в сообщении #1568052 писал(а):
хотел показать что рассматриваю $A^n + B^n = C^n$; как прямоугольный треугольник
Что значит "рассмотреть уравнение как прямоугольный треугольник"?

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение29.10.2022, 09:20 


08/09/07

71
Калининград
Все прямоугольные треугольники отвечают единственной формуле Пифагора $A^2 + B^2 = C^2$. Если такой треугольник вписан в окружность, то $C^2$ это одновременно и квадрат диаметра окружности, а целые значения квадратов $A^2; B^2$ катетов в уравнении, указывают на наличие точек их пересечения, принадлежащих данной окружности.
В рассматриваемом случае $(\frac{A^n}{C^f}) + (\frac{B^n}{C^f}) = (\frac{C^n}{C^f})$; → $(\frac {A^f} {C^f}) A^2 + (\frac {B^f} {C^f})B^2 = (\frac {C^f} {C^f})C^2$; (2 + f = n – целое число) при бесконечном количестве вариантов окружности, с квадратом диаметра в целых значениях $C^2$, нет ни одного варианта, чтобы точка пересечения катетов могла принадлежать окружности (отсутствуют целые значения квадратов катетов $(\frac {A^f} {C^f}) A^2 < A^2$; $(\frac {B^f}{C^f})B^2 < B^2$, и таким образом исключается принадлежность выражения $A^n + B^n = C^n$ к равенству Пифагора $(\frac {A^f} {C^f}) A^2 + (\frac {B^f}{C^f})B^2 \ne C^2$.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение29.10.2022, 11:06 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
Вы читаете, что вас спрашивают? Еще раз: о каком конкретно треугольнике речь (с какими сторонами), и с чего вы взяли, что он прямоугольный?
Теорему Пифагора все знают, и как устроены вписанные в окружность треугольники - тоже, не надо повторять.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение29.10.2022, 12:06 


08/09/07

71
Калининград
Предположительно прямоугольный треугольник большего размера $A^n + B^n = C^n$ со сторонами $\sqrt{A^n}; \sqrt{B^n}; \sqrt{C^n}$ приводится к меньшему, путем деления этого уравнения $(\frac {A^f} {C^f}) A^2 + (\frac {B^f} {C^f})B^2 = (\frac {C^f} {C^f})C^2$; на коэффициент кратности $C^f$ квадрата диаметра описанной вокруг этого треугольника окружности.
Если треугольник прямоугольный, то все квадраты сторон должны быть целыми, а если этого не получается, то равенства в этом выражении не может быть.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение29.10.2022, 16:55 
Заслуженный участник


18/09/21
1756
VladStro в сообщении #1568123 писал(а):
со сторонами $\sqrt{A^n}; \sqrt{B^n}; \sqrt{C^n}$
Если $n$ нечётное, то эти числа нецелые (иррациональные) для целых $A$, $B$, $C$ не являющихся точными квадратами. А для теоремы Ферма как раз интересен случай простых степеней больше 2, которые все нечётны.
Т.е. пифагоровы тройки (это тройки целых чисел) тут не имеют никакого отношения.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение29.10.2022, 17:33 


08/09/07

71
Калининград
Здесь стороны $\sqrt{A^n}; \sqrt{B^n}; \sqrt{C^n}$ указаны только для информации о том, что уравнение $A^n + B^n = C^n$; рассматривается как квадратное. Нигде в формулах эти значения не применяются для расчетов. Для подтверждения наличия, или отсутствия равенства в этом выражении, достаточно привести его к равенству Пифагора. Если приводится в целых квадратах, значит равенство, если не приводится, значит равенства здесь и быть не может. Пифагора то вряд ли кто опровергнет.

 Профиль  
                  
 
 Re: Простые основы утверждения Пьера Ферма.
Сообщение29.10.2022, 20:08 
Заслуженный участник
Аватара пользователя


16/07/14
9143
Цюрих
VladStro в сообщении #1568123 писал(а):
Предположительно прямоугольный треугольник большего размера $A^n + B^n = C^n$
Определение треугольника приведите, пожалуйста. Вы уже который раз называете треугольником уравнение.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 69 ]  На страницу 1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group