2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Мальчик на льду
Сообщение03.04.2022, 01:52 
Sender в сообщении #1551683 писал(а):
lel0lel в сообщении #1551639 писал(а):
Удивительно быстро и без числа пи.
У меня получилось похожее выражение, если рассмотреть траекторию из трёх кусков парабол, гладко сопрягающихся в вершинах. Но там вроде получается $3\sqrt{2\sqrt{3}}$, на рекорд не тянет.
Вы правы, я упустил двойку в коэффициенте.

 
 
 
 Re: Мальчик на льду
Сообщение03.04.2022, 08:41 
Куски парабол проходят через вершины и сопрягаются над серединами сторон треугольника:
$T=6\sqrt{\frac{2\sqrt{3}}{5}}\sqrt{\frac{a}{g\mu}}=4,994$
Немного не совпадает с авторским ответом

 
 
 
 Re: Мальчик на льду
Сообщение03.04.2022, 15:33 
Аватара пользователя
Видимо, можно все таки смело предположить, что оптимальная траектория гладкая, симметричная и проходит через вершины треугольника, а значит в вершинах скорость направлена перпендикулярна биссектрисе соотв. угла, т.е. по углом $\pi/3$ к стороне треугольника. "Свободное падение" на сторону треугольника с множителем $3\sqrt{2\sqrt3}\approx5.5836$ неоптимально, а лучше, чем описанная окружность с множителем $\frac{2\pi}{3^{1/4}}\approx4.7742$ у меня не получилось. Добавлю в копилку еще пару субоптимальных траекторий ($\tilde{t}$ - одна шестая периода, на которой рассматривается движение, $Ox$ направлена вдоль одной из сторон треугольника, $w_x$ - ускорение вдоль $Ox$):
а) $w_x=\operatorname{const}\neq0$ (тоже "свободное падение" на сторону треугольника, но "поле тяжести" не перпендикулярно стороне): множитель $6\left(\frac37\right)^{1/4}\approx4.8546$
б) $w_x(t)=\sqrt{\mu g}\cos{\frac\pi{2}\frac{t}{\tilde{t}}}$: множитель $\frac{3\pi}{\sqrt{\frac\pi{\sqrt3}+2}}\approx4.826$

 
 
 
 Re: Мальчик на льду
Сообщение03.04.2022, 15:36 
Мне кажется, в теме остро не хватает человека, который не прогуливал вариационное исчисление. :-)

 
 
 
 Re: Мальчик на льду
Сообщение03.04.2022, 15:42 
Аватара пользователя

(Оффтоп)

Sender в сообщении #1551723 писал(а):
который не прогуливал вариационное исчисление.
Угу, вариационная задача-то по смыслу, я к сожалению вообще не помню как и с чем это едят. Надежда исключительно на кофейную гущу :facepalm:

 
 
 
 Re: Мальчик на льду
Сообщение03.04.2022, 20:22 
Аватара пользователя
Уффф, запишу хотя бы постановку вариационной задачи, которую пытаюсь решить в этих предположениях
waxtep в сообщении #1551721 писал(а):
оптимальная траектория гладкая, симметричная и проходит через вершины треугольника, а значит в вершинах скорость направлена перпендикулярна биссектрисе соотв. угла, т.е. под углом $\pi/3$ к стороне треугольника
Искомый период $$T=\frac{3\sqrt2}{\sqrt{I}}\sqrt{\frac{a}{\mu g}}$$где $$I=\int_0^1\left(f(s)+\frac1{\sqrt3}\sqrt{1-f^\prime(s)^2}\right)ds$$причем $|f^\prime(s)|\leqslant1,f(0)=0$. Требуется найти непрерывную и дифференцируемую функцию $f(s)$, доставляющую максимум $I$. По смыслу, $s$ - время, $f(s)$ - приращение проекции скорости на сторону треугольника, нормированные/обезразмеренные. Постановка, кажется, должна быть верной, поскольку получена бесхитростно из уравнений движения с введением в качестве исходной неизвестной функции угла между ускорением и стороной треугольника на рассматриваемой одной шестой периода

 
 
 
 Re: Мальчик на льду
Сообщение04.04.2022, 05:31 
Аватара пользователя
Пока что единственно, что можно сказать, что из соображений размерности $t=\alpha\sqrt{\frac{a}{\mu g}}$, и что форма оптимальной кривой, как ни странно, ни от чего не зависит. Ну то есть ее масштаб просто пропорционален $a$
Форма кривой естественно гладкая, без каких либо углов. Величина ускорения всегда максимальна и равна $\mu g$ Меняется только направление относительно вектора скорости, то есть касательной к кривой в данной точке.

Очевидно, что задача чисто вариационная. Поэтому и попытаемся поставить эту задачу корректным образом.
Собственно, в общем случае неважно, какой правильный многоугольник обегает пацан. Это может быть и квадрат, и даже просто отрезок.
Пусть у нас дан отрезок на оси $x$ с концами в точках $-a$, $a$. Пацан выбегает из точки $a$ с начальной скоростью $v_0$ под углом $\pi/2$ к оси $x$
Для треугольника угол будет $\pi/3$, для квадрата $\pi/4$ и тд.
В этой точке очевидно тангенциальное ускорение равно нулю. Значит все ускорение, которое равно $\mu g$, будет нормальным. И значит в этой точке мы сразу знаем радиус кривизны нашей искомой кривой $r(\varphi)$. Нам надо найти форму этой кривой для углов от $0$ до $\pi/2$. И ещё нам известно, что при угле $\pi/2$ кривая перпендикулярна оси $y$. То есть $ \frac{dr}{d\varphi}=0$
Остаётся простая аналитика. В каждой точке кривой вычисляем радиус ее кривизны, и по известной скорости вычисляем нормальное ускорение. Затем вычисляем тангенциальное ускорение, что нам даёт приращение скорости. Превращаем все эти слова в Формулы и ищем минимум времени прохождения этой кривой для заданной начальной скорости.
А потом ищем минимум времени как функцию начальной скорости.
Чиста компьютерная задачка без какой либо решабельной аналитики.

 
 
 
 Re: Мальчик на льду
Сообщение04.04.2022, 08:53 
Аватара пользователя
Ignatovich в сообщении #1551706 писал(а):
Куски парабол проходят через вершины и сопрягаются над серединами сторон треугольника:
$T=6\sqrt{\frac{2\sqrt{3}}{5}}\sqrt{\frac{a}{g\mu}}=4,994$
Немного не совпадает с авторским ответом


Если бегать просто по кругу, то получается $\approx 4.774$.
Это гораздо ближе к авторскому ответу.

 
 
 
 Re: Мальчик на льду
Сообщение04.04.2022, 09:04 
У меня получился вот такой коэффициент: $\displaystyle 6 \sqrt{\dfrac{3}{2\sqrt{3} + \ln\left(2+\sqrt{3}\right)}} \approx 4.7528$
Вариационную задачу решать пришлось, правда, не до конца. Основная полезная вещь, которая получается из вариационной задачи, это закон изменения ускорения, а именно, при движении от одной вершины к другой тангенс угла между вектором ускорения и нормалью к стороне линейно зависит от времени.

 
 
 
 Re: Мальчик на льду
Сообщение04.04.2022, 09:48 
Одна точка фиксирована, вторая движется равномерно прямолинейно по отрезку. Луч через две точки задаёт направление ускорения. Модуль ускорения всегда максимальный возможный. Так?

 
 
 
 Re: Мальчик на льду
Сообщение04.04.2022, 10:26 
Да, так. Причем еще получается, что в вершинах ускорение перпендикулярно скорости, что из симметрии более-менее очевидно, а из постановки вариационной задачи для движения из одной вершины в другую - нисколько не очевидно. Поэтому мне кажется, что нужный ответ можно получить и попроще, желательно совсем на пальцах.

 
 
 
 Re: Мальчик на льду
Сообщение04.04.2022, 18:31 
То есть, одна точка в центре треугольника, вторая обегает треугольник по естественному параметру? Это замечательно!

 
 
 
 Re: Мальчик на льду
Сообщение04.04.2022, 20:57 
EUgeneUS в сообщении #1551767 писал(а):
Если бегать просто по кругу, то получается $\approx 4.774$.
Это гораздо ближе к авторскому ответу.

То есть, вероятно, от круга не сильно отличается уже для трёх вершин. Интересно канеш глянуть на траекторию. И на случай двух вершин.

 
 
 
 Re: Мальчик на льду
Сообщение04.04.2022, 22:32 
Аватара пользователя
12d3 в сообщении #1551770 писал(а):
У меня получился вот такой коэффициент: $\displaystyle 6 \sqrt{\dfrac{3}{2\sqrt{3} + \ln\left(2+\sqrt{3}\right)}} \approx 4.7528$


Это правильный ответ. Задачу можно решить почти полностью без решения вариационной задачи. Удобней рассматривать все в пространстве скоростей, а там выходит задача эквивалентная нахождению формы тяжелого каната в поле тяжести.

-- 04.04.2022, 21:44 --

Решая уже вариационную задачу для любого правильного многоугольника, получится множитель $$ \frac{2 N}{\sqrt{\frac{1}{\sin{\frac{\pi}{N}}} + \frac{1}{2} \ctg^2{\frac{\pi}{N}} \ln{\frac{1 +\sin{\frac{\pi}{N}}}{1 - \sin{\frac{\pi}{N}}}}             }}$$

 
 
 
 Re: Мальчик на льду
Сообщение04.04.2022, 23:12 
Оптимальность при этом решении доказывается?

 
 
 [ Сообщений: 51 ]  На страницу Пред.  1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group