2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение14.03.2022, 19:01 
Аватара пользователя


07/01/16
1612
Аязьма
sergey zhukov в сообщении #1550430 писал(а):
waxtep
Ну так значит $c^+-c^-=\frac{4x}{t_3}(1-2\varepsilon)$
Но тогда ж верно и по отдельности $c^+=\dfrac{c}{2\varepsilon},c^-=\dfrac{c}{2(1-\varepsilon)}$ и $c^+-c^-=\dfrac{c\,(1-2\varepsilon)}{2\varepsilon(1-\varepsilon)}$ - в точности как изложил уважаемый пианист. Откровенно говоря, я запутался

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение15.03.2022, 00:23 


17/10/16
4800
waxtep
Я думаю, что разность скоростей нужно выразить через их сумму, после чего положить эту сумму постоянной. Если выразить разность только через среднюю скорость света, то условие постоянства суммы скоростей просто не используется, и при изменении $\varepsilon$ мы получаем переменным и то и другое (и сумма и разность стремятся к бесконечности при крайних $\varepsilon$).

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение20.03.2022, 08:21 


08/03/22
29
waxtep в сообщении #1550441 писал(а):
sergey zhukov в сообщении #1550430 писал(а):
waxtep
Ну так значит $c^+-c^-=\frac{4x}{t_3}(1-2\varepsilon)$
Но тогда ж верно и по отдельности $c^+=\dfrac{c}{2\varepsilon},c^-=\dfrac{c}{2(1-\varepsilon)}$ и $c^+-c^-=\dfrac{c\,(1-2\varepsilon)}{2\varepsilon(1-\varepsilon)}$ - в точности как изложил уважаемый пианист. Откровенно говоря, я запутался

Посмотрел подробнее на эти события в ИСО, как в статье, и из АСО для лучшего понимания.

Изменение скорости света в рассматриваемой ИСО от $c/2$ до бесконечно большой в пределе из $v=\dfrac{c}{2\varepsilon}$ никак не является отвергаемым, но логически обоснованным получилось, потому что из АСО предельные значения наблюдаются при вполне понятных значениях скорости самой ИСО от $0$ до $2c$.
Учитывая сокращение линейных размеров в ИСО нормально понимается бесконечная скорость в ней, т.к. при этом преодолевается расстояние по направлению движения ИСО в АСО стремящееся к нулю в пределе. В ИСО же эти размеры линейные воспринимаются не деформированными.

При совпадении скорости света и скорости ИСО по направлению в пределе (скорость удаления) в АСО стремится к $0$ в пределе (в ИСО при этом скорость эта стремится к $c/2$, а при скорости сближения, когда в ИСО скорость в пределе стремится к бесконечности, в АСО эта скорость сближения стремится к $2c$.

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение25.03.2022, 21:49 


17/10/16
4800
Modest2
Думаю, рассуждение должно быть проще, и waxtep с самого начала сказал верно.

Если мы знаем только среднюю скорость света $c$ и при этом заранее не знаем ничего о механизме, согласно которому различаются $c^+$ и $c^-$, то можем без проблем предположить, что, например, $c^+=\infty$ и $c^-=\frac{c}{2}$. Это вполне допустимо, если мы совершенно не знаем причин, по которым свет по разным направлениям имеет разную скорость.

Но если мы дополнительно знаем, что свет распространяется в эфире, который имеет некоторую скорость $u$, то мы понимаем, что в этом случае дополнительно должно быть $c^++c^-=2c$, и вариант $c^+=\infty$ и $c^-=\frac{c}{2}$ на самом деле невозможен. Условие $c^++c^-=2c$ обязательно должно войти в нашу систему уравнений, иначе они не согласуются с моделью эфира.

Сбивает с толку то, что математика дает разное, но однозначное решение для $c^+$ и $c^-$ в обоих случаях: когда мы используем условие $c^++c^-=2c$ и когда не используем его, хотя, казалось бы, если опустить это условие, то однозначный ответ получить нельзя.

Так получается потому, что если мы не используем условие $c^++c^-=2c$, то автоматически используем условие $x=const$. Если же мы используем условие $c^++c^-=2c$, то мы уже не фиксируем $x$. И на самом деле второй вариант правильный, т.к. мы ничего заранее не знаем про $x$.

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение26.03.2022, 09:00 


08/03/22
29
sergey zhukov в сообщении #1551063 писал(а):
Думаю, рассуждение должно быть проще

Если мы знаем только среднюю скорость света $c$ и при этом заранее не знаем ничего о механизме, согласно которому различаются $c^+$ и $c^-$, то можем без проблем предположить, что, например, $c^+=\infty$ и $c^-=\frac{c}{2}$. Это вполне допустимо, если мы совершенно не знаем причин, по которым свет по разным направлениям имеет разную скорость.

При отсутствии таких знаний можем предположить $c^-=0$ и $c^+=2}$, поскольку ничего не знаем, а средняя скорость света и при этом предположении равана $c$.

sergey zhukov в сообщении #1551063 писал(а):
Но если мы дополнительно знаем, что свет распространяется в эфире, который имеет некоторую скорость $u$, то мы понимаем, что в этом случае дополнительно должно быть $c^++c^-=2c$, и вариант $c^+=\infty$ и $c^-=\frac{c}{2}$ на самом деле невозможен. Условие $c^++c^-=2c$ обязательно должно войти в нашу систему уравнений, иначе они не согласуются с моделью эфира.

Это только по механике Ньютона, т.е. без Лоренцева сокращения?

sergey zhukov в сообщении #1551063 писал(а):
Сбивает с толку то, что математика дает разное, но однозначное решение для $c^+$ и $c^-$ в обоих случаях: когда мы используем условие $c^++c^-=2c$ и когда не используем его, хотя, казалось бы, если опустить это условие, то однозначный ответ получить нельзя.

Тут не смог понять.

sergey zhukov в сообщении #1551063 писал(а):
Так получается потому, что если мы не используем условие $c^++c^-=2c$, то автоматически используем условие $x=const$. Если же мы используем условие $c^++c^-=2c$, то мы уже не фиксируем $x$. И на самом деле второй вариант правильный, т.к. мы ничего заранее не знаем про $x$.

Тут бесконечное количество возможностей, т.к. среднюю скорость $c$ можно получить бесконечным количеством сочетаний $c^+$ и $c^-$.

Проще, кажется, не получается. Или просто я не понимаю.

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение26.03.2022, 23:04 


08/03/22
29
Modest2 в сообщении #1551084 писал(а):

При отсутствии таких знаний можем предположить $c^-=0$ и $c^+=2с}$, поскольку ничего не знаем, а средняя скорость света и при этом предположении равана $c$.

Очепятка, надо: $c^-=0$ и $c^+=2c}$

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение27.03.2022, 05:55 


17/10/16
4800
Modest2
Кажется, у нас тут перепутаны две разные скорости света. Первая - это скорость света относительно эфира $c_0$. Вторая - это средняя по времени скорость света на пути "туда и обратно" $\bar{c}$. В эфирной модели связь между ними такая: $\bar{c}=4\varepsilon(1-\varepsilon)c_0$.

$c_0=const$, а вот $\bar{c}=f(\varepsilon)$

Поэтому $c^+-c^-=2c_0(1-2\varepsilon)=\frac{\bar{c}(1-2\varepsilon)}{2\varepsilon(1-\varepsilon)}$.

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение27.03.2022, 15:13 


08/03/22
29
sergey zhukov в сообщении #1551142 писал(а):
Modest2
Кажется, у нас тут перепутаны две разные скорости света. Первая - это скорость света относительно эфира $c_0$. Вторая - это средняя по времени скорость света на пути "туда и обратно" $\bar{c}$. В эфирной модели связь между ними такая: $\bar{c}=4\varepsilon(1-\varepsilon)c_0$.

$c_0=const$, а вот $\bar{c}=f(\varepsilon)$

Поэтому $c^+-c^-=2c_0(1-2\varepsilon)=\frac{\bar{c}(1-2\varepsilon)}{2\varepsilon(1-\varepsilon)}$.


Дело в том, что практика выявила, что в любой ИСО $c_0$ = $\bar{c}$ и если скорости света в одну и другую стороны равны $c^+=\dfrac{c}{2\varepsilon}, и   c^-=\dfrac{c}{2(1-\varepsilon)}$, то $\bar{c} = \frac{x}{t_2 - t_1} + \frac{x}{t_3 - t_2} = \frac{x}{\varepsilon(t_3 - t_1)} + \frac{x}{t_3 - t_1 - \varepsilon(t_3 - t_1)} = \frac{2x}{(t_3 - t_1) + \varepsilon+1-\varepsilon}} =  $c_0$
То есть не зависимо от выбора $\varepsilon$ Средняя скорость света всегда равна его изотропной скорости в АСО (эфире).

А это разность скоростей:
$\frac{\bar{c}(1 - 2\varepsilon)}{2\varepsilon(1 - \varepsilon)}$
она переменная.

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение27.03.2022, 16:41 


17/10/16
4800
Modest2
Предлагаю тогда такой подход.

Мы живем в полной темноте и в момент $t=0$ посылаем импульс света, а в момент $t$ получаем отражение. Мы ничего не знаем о том, как быстро двигался свет туда и назад, а так же не знаем, какое расстояние $x$ он преодолел. Пока мы располагаем только суммарным временем $t$ движения света туда и обратно.

Еще мы предполагаем, что существует поток эфира, в котором свет движется с постоянной скоростью $c_0=const$ (мы знаем только, что она постоянна), и что скорость света складывается со скоростью эфира. Скорость движения самого эфира учитывается у нас через произвольный $\varepsilon$ - доля времени $t$, в течении которого свет идет от нас.

Очевидно, что $x^+=x^-$

$t\varepsilon c^+=(1-\varepsilon)t c^-$

$0=c^--\varepsilon c^--\varepsilon c^+$

$c^-=2\varepsilon c_0$

где $c^++c^-=2c_0$

Тогда $c^+=2c_0-c^-=2c_0-2\varepsilon c_0=2(1-\varepsilon)c_0$

Наконец, $c^--c^+=2c_0(1-\varepsilon-\varepsilon)=2c_0(1-2\varepsilon)$

При этом мы получаем так же $x=t\varepsilon c^+= 2tc_0\varepsilon(1-\varepsilon)$

Средняя скорость туда и назад равна $\bar{c}=\frac{2x}{t}=4c_0\varepsilon(1-\varepsilon)$

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение27.03.2022, 18:42 


08/03/22
29
sergey zhukov в сообщении #1551186 писал(а):
Средняя скорость туда и назад равна $\bar{c}=\frac{2x}{t}=4c_0\varepsilon(1-\varepsilon)$


Полагаю, что такой подход ничего не даст, т.к. фактические измерения в явной неАСО (Земля) дают среднюю скорость света постоянной величины $c_0$ вдоль любого направления, в любое время года и суток.

-- 27.03.2022, 18:42 --

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение02.04.2022, 16:46 


17/10/16
4800
Modest2
Я думаю, определение метра так же зависит от $\varepsilon$.

Мы послаем импульс света в некотором направлении и получаем отраженный от известного предмета (скажем, зеркала) сигнал через время $t$. При этом мы считаем, что $\bar{c}=const$. Имея две эти константы $t$ и $\bar{c}$ мы начинаем варьировать $\varepsilon$. Тогда мы получаем, что расстояние $x$ до этого зеркала при разных предположениях о $\varepsilon$ оказывается разным.

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение02.04.2022, 20:39 


08/03/22
29
В своей ИСО экспериментатор в условиях Земли отмеряет расстояние $x$, измеряет скорость среднюю света туда-обратно и получает всегда одинаковую величину, т.е. скорость света: $\bar{c}= c_0=const$

Об этом уже сообщал:
Modest2 в сообщении #1551178 писал(а):
практика выявила, что в любой ИСО $c_0$ = $\bar{c}$ и если скорости света в одну и другую стороны равны $c^+=\dfrac{c}{2\varepsilon}, и   c^-=\dfrac{c}{2(1-\varepsilon)}$, то $\bar{c} = \frac{x}{t_2 - t_1} + \frac{x}{t_3 - t_2} = \frac{x}{\varepsilon(t_3 - t_1)} + \frac{x}{t_3 - t_1 - \varepsilon(t_3 - t_1)} = \frac{2x}{(t_3 - t_1) + \varepsilon+1-\varepsilon}} =  c_0$

То есть не зависимо от выбора $\varepsilon$ Средняя скорость света всегда равна его изотропной скорости в АСО (эфире).


Нет зависимости $x$ от $\varepsilon$.

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение04.04.2022, 08:26 


17/10/16
4800
Modest2
Тогда можно еще так:

На самом деле мы не знаем $c_0$ и не можем ее измерить. Мы измеряем только $\bar{c}$. Из эксперимента мы знаем только, что $\bar{c}=const$, но не что $c_0=\bar{c}$. У нас две неизвестных: скорость эфира $u$ и скорость света в эфире $c_0$. Только если $u=0$, мы можем сказать, что $c_0=\bar{c}$, но мы не знаем, чему равно $u$. Например, в опыте с лодками они очевидно не равны: $c_0$ почти всегда больше $\bar{c}$ и соотношение между ними зависит от скорости потока $u$.

Проведя эксперимент и имея фиксированные $t$ и $\bar{c}$, мы, варьируя $\varepsilon$, можем получить:

$c_0=\frac{\bar{c}}{4\varepsilon(1-\varepsilon)}$

$c^++c^-=2c_0=\frac{\bar{c}}{2\varepsilon(1-\varepsilon)}$

$c^--c^+=2c_0(1-2\varepsilon)=\bar{c}\frac{(1-2\varepsilon)}{2\varepsilon(1-\varepsilon)}$

В зависимости от выбора $\varepsilon$ мы имеем разную скорость света относительно эфира $c_0$, но одинаковую среднюю скорость света $\bar{c}$.

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение04.04.2022, 09:32 


08/03/22
29
Цель Ваших размышлений?

Я задал вопрос по известной статье.

В статье полагается АСО, т.е. эфир, и ИСО, т.е. Земля.
Рассматриваются скорости "туда" и "обратно", какими они могут быть по величине в ИСО.

При этом $\varepsilon$ затрагивает и может только затрагивать долю времени затрачиваемую на прохождение светом пути в одну сторону по отношению ко всему затраченному времени на прохождение этого пути туда-обратно в ИСО, обладая проверенной информацией о постоянстве средней скорости света.
Более никакой нагрузки этот коэффициент не несет.
По этому нет никаких возможностей вычислять гипотетическую среднюю скорость в зависимости от выбранного коэффициента $\varepsilon$. Эта скорость известна и всегда равна $\bar{c}=const=c_0$.

 Профиль  
                  
 
 Re: Не понятна одна формула из статьи А.А.Тяпкина
Сообщение04.04.2022, 11:00 


17/10/16
4800
Modest2
Средняя скорость света $\bar{c}$ остается постоянной. Она от $\varepsilon$ не зависит, как показывает опыт измерения этой скорости у двух движущихся друг относительно друга наблюдателей. Но это же не скорость света относительно эфира $c_0$. Мы никогда не измеряем $c_0$ и не можем измерить. Это не то же самое, что $\bar{c}$.

Мы можем только делать предположения о $c_0$, имея $t$, $\bar{c}$ и выбирая произвольный $\varepsilon$. Я думаю, в статье написано не $c^+-c^-=2\bar{c}(1-2\varepsilon)$, а $c^+-c^-=2c_0(1-2\varepsilon)$. Это не одно и то же. Например, $c_0$ может стремится к бесконечности, и $c^+-c^-$ тоже.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 55 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group