Да, но нам не надо забывать, что мы ищем не одно простое, а как минимум 11 простых. Стало быть, если вероятность найти 1 простое упала в два раза, то вероятность найти 11 простых упадёт в 2048 раз.
Это да, печально. Но это верно лишь если мы проверяем одинаковый список чисел, я же говорил скорее в контексте увеличения шага, что не факт что при использовании моей программы это так же страшно как и для одного PARI. А при изменении шага мы меняем список проверяемых чисел и потому вероятности будут другими. Смотрите,
предположим искомая пятнашка сидит около
и включает в себя на одном из непроверяемых мест и
(это очень сильное условие, с потолка, лишь для иллюстрации моей мысли), тогда при поиске КМК37-11 паттерна мы её обнаружим перебрав
шагов, а изменив паттерн до КМК41-12 (вставив туда куда-то и
,
предположим это можно сделать, если не для КМК37-11, то для какого-то другого, не суть) мы увеличим шаг в
раз и нам для нахождения той же пятнашки понадобится лишь
шагов. А скорость обработки одного шага фактически одинакова, т.е. в те же
раз ускорим нахождение той пятнашки. Потому не очень понятно требование минимизации величины шага (плюс ниже показываю КМК23-11 паттерн с шагом в миллиард раз меньше). Это было логично когда вся проверка была в PARI, он с большими числами откровенно тормозит, но моей программе на это фиолетово.
Да, вполне вероятно что первая пятнашка будет иметь вовсе не
, а какое-то другое простое, это огромный недостаток. Но ведь ровно так же она может и не иметь ни
, ни
, ни остальных малых простых в квадрате (кроме разумеется
и
которые будут всегда). Я согласен что малые простые встречаются чаще больших, это понятно, но почему из всех возможных КМК выбран именно КМК37-11 уже не очень понятно. Да и вообще требование чтобы 5,7,11,13 были непременно в квадратах (что минимизирует шаг) тоже не совсем понятно, особенно в контексте использования моей проги. Возможно непонятно лишь мне, а Вы или VAL знаете причину, но скажем выхлоп Maple меня не убеждает, я не понимаю что в нём вижу.
То есть наибольшее подквадратное число 31? Что-то не верится, напишите, плиз, паттерн полностью.
Э, я что, снова где-то просчитался? Возможно, давайте разберёмся, берём выписанный паттерн
45p,98p,169pq,12p,121pq,50p,3pq^2,32p,7pq^2,18p,5pq^2,4pq,3pq^2,2pq^2,A
и в каждое q^2 подставляем слева направо числа 17,19,23,29,31:
45p,98p,169pq,12p,121pq,50p,867p,32p,2527p,18p,2645p,4pq,2523p,1922p,A
В нём все простые с 2 по 31 присутствуют в квадрате, т.е. насколько я понимаю это КМК паттерн. Простых 37 и более в нём нет, значит это КМК31. Проверить можно 11 чисел (три числа имеют произведение простых и одно место осталось пустым), значит это КМК31-11. Я где-то ошибся? Или это не КМК паттерн так как 121 и 169 не входят в 11 проверяемых чисел? Тогда я неправильно понимаю критерий отнесения паттерна к КМК, ведь в самом первом паттерне VAL числа 17^2, 29^2, 13^2 на позициях соответственно n+0, n+10, n+12 тоже не входят в список проверяемых, однако он считается КМК37-11.
Более того, есть и вот такие паттерны (13 зеркальных пар, покажу лишь один):
45p,98p,A,12p,B,50p,363p,32p,1183p,18p,5pq^2,4pq,3pq^2,2pq^2,C
В него можно вставить простые 17,19,23 на места с q^2 и получить паттерн КМК
23-11 (насколько я понимаю обозначение КМК, ведь все простые с 2 по 23 тут есть в квадратах) с одним произведением простых и тремя пустыми местами:
45p,98p,A,12p,B,50p,363p,32p,1183p,18p,1445p,4pq,1083p,1058p,C
Аналогично есть и КМК29-11 (покажу первый из серии, подставить простые 17,19,23,29 в q^2 в любом порядке оставлю Вам):
45p,98p,A,12p,121pq,50p,507p,32p,7pq^2,18p,5pq^2,4pq,3pq^2,2pq^2,B
Для приведённого КМК31-11 шаг составил 321796081609486619335200, для КМК23-11 шаг 398163429158695200, на порядки (от трёх до девяти! порядков!) меньше шага КМК37-11. Так почему не они считаются наиболее перспективными? Мне непонятно.
Лично я поддерживаю различные Ваши исследования и до сих пор в восторге от 1000+кратного увеличения скорости.
Тут вынужден пояснить: исследования допустимых паттернов и разработка программы для ускорения проверки одного паттерна — совершенно разные вещи, практически не пересекающиеся. Вторая задача временно (до появления новых идей) считаем выполнена, а по первой нет вообще никакой ясности, во всяком случае у меня.