2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Емкость плоского конденсатора с учетом краевых эффектов
Сообщение24.03.2021, 19:24 
Аватара пользователя


08/10/09
966
Херсон
В ЛЛ ("Электродинамика сплошных сред") приводится приближенная формула для емкости плоского конденсатора с круглыми обкладками с учетом краевых эффектов (приближение Кирхгофа):
$$C\approx C_0+\frac{\varepsilon_0 D}{2}\left[\ln\left(\frac{8\pi D}{d} \right) -1 \right].$$. Здесь $C_0$-емкость идеального конденсатора (поле внутри всюду однородное); $D$-диаметр обкладки; $d$-расстояние между обкладками. Из этого выражения явственно следует, что учет краевых эффектов увеличивает емкость по сравнению с идеальным ($D/d\to \infty$) случаем. Однако как я не пытался качественно априорно обьяснить эту закономерность (например, что поверхностная плотность заряда обращается в бесконечность на краях, но несколько уменьшается в центральной части обкладки), у меня ничего путного не вышло. Складывается впечатление, что априорного обьяснения вообще не существует и все решает "счет"....

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение24.03.2021, 20:48 


07/08/18
48
reterty в сообщении #1510893 писал(а):
поверхностная плотность заряда обращается в бесконечность на краях, но несколько уменьшается в центральной части обкладки
Представляю уже заряженный конденсатор с равномерным распределением заряда - это одно поле по центру.
Расбежались те же заряды к краям - поле по центру точно будет меньше, значит поле-напряжение меньше, емкость больше.

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение24.03.2021, 20:56 


27/08/16
10711
Повышение ёмкости объясняется очень просто. Конденсатор запасает электромагнитную энергию. Энергия конденсатора равна $W=\frac{CU^2}2$. То есть, для одной и той же разности потенциалов, чем больше энергия электрического поля - тем больше ёмкость.

Но энергия конденсатора равна $W=\int_V {\frac{\varepsilon E^2}2}\,dV$, и замечая, что $E^2=E_x^2+E_y^2+E_z^2$, и что если напряженность поля внутри между плоскостями пластин распределена неравномерно, то интеграл от этой величины между пластинами только возрастает по сравнению с равномерным его распределением, и что дополнительно нужно учитывать энергию поля снаружи пластин, немедленно получаем, что краевые эффекты только увеличивают ёмкость по сравнению с идеальным полем, перпендикулярным пластинам.

Что касается именно логарифма - да, формула немного странная. Обычно, если диэлектрик однородный, принимают, что край конденсатора расширяется на $0.1d$. В случае же такого логарифма краевая ёмкость на единицу длины края (fringing capacitance per unit length) может возрастать при увеличении диаметра пластин $D$ неограниченно, хоть и логарифмически медленно, что несколько нефизично, а значит, точным решением задачи быть не может.

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение25.03.2021, 05:13 
Аватара пользователя


08/10/09
966
Херсон
realeugene в сообщении #1510934 писал(а):
Повышение ёмкости объясняется очень просто. Конденсатор запасает электромагнитную энергию. Энергия конденсатора равна $W=\frac{CU^2}2$. То есть, для одной и той же разности потенциалов, чем больше энергия электрического поля - тем больше ёмкость.

Но энергия конденсатора равна $W=\int_V {\frac{\varepsilon E^2}2}\,dV$, и замечая, что $E^2=E_x^2+E_y^2+E_z^2$, и что если напряженность поля внутри между плоскостями пластин распределена неравномерно, то интеграл от этой величины между пластинами только возрастает по сравнению с равномерным его распределением, и что дополнительно нужно учитывать энергию поля снаружи пластин, немедленно получаем, что краевые эффекты только увеличивают ёмкость по сравнению с идеальным полем, перпендикулярным пластинам.

Уважаемый realeugene. Направим ось $x$ перпендикулярно пластинам конденсатора. Вы, очевидно, считаете, что поскольку разность потенциалов между пластинами фиксирована, то компонента напряженности поля $E_x$ в каждой точке остается неизменной при учете краев. Для меня это не столь очевидно, поскольку неизменным должен лишь остаться интеграл $\int E_xdx$ (при любых фиксированных $y$ и $z$, разумеется). В связи с этим, на мой взгляд, интеграл $W=\int_V {\frac{\varepsilon E_x^2}2}\,dV$ мог и уменьшиться по сравнению с "однородным случаем".

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение25.03.2021, 10:11 


27/08/16
10711
reterty в сообщении #1511002 писал(а):
на мой взгляд, интеграл $W=\int_V {\frac{\varepsilon E_x^2}2}\,dV$ мог и уменьшиться по сравнению с "однородным случаем".
Средний квадрат равен квадрату среднего плюс дисперсии.

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение25.03.2021, 12:40 
Аватара пользователя


08/10/09
966
Херсон
realeugene в сообщении #1511030 писал(а):
reterty в сообщении #1511002 писал(а):
на мой взгляд, интеграл $W=\int_V {\frac{\varepsilon E_x^2}2}\,dV$ мог и уменьшиться по сравнению с "однородным случаем".
Средний квадрат равен квадрату среднего плюс дисперсии.

Квадрат среднего мог стать много меньше чем в "однородном случае", так что даже "плюс дисперсия" не поможет. А вообще, теперь я думаю так: В однородном случае вся энергия запасена внутри. С учетом краев энергия перераспределяется: часть снаружи-часть внутри. Внутри явно меньше чем в однородном случае. Но еще есть "снаружи", которая увеличивает емкость. Имеем дело с двумя конкурирующими факторами. В итоге, аналитический расчет показывает, что "увеличение снаружи" больше чем уменьшение внутри.....Кстати, абсолютно идентично обстоит дело с индуктивностью круглого соленоида ($W_m=LI^2/2$), но там счет дает результирующее уменьшение, по сравнению с бесконечно длинным соленоидом (смотри все тот ЛЛ "Электродинамика сплошных сред")

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение25.03.2021, 12:53 


27/08/16
10711
reterty в сообщении #1511048 писал(а):
Квадрат среднего мог стать много меньше чем в "однородном случае"

Нет, $\bar E_x  = U/d = \operatorname{const}$. Осреднение вдоль кратчайшего расстояния между пластинами.

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение26.03.2021, 07:32 
Заслуженный участник


28/12/12
7962
Разумное, на мой взгляд, качественное объяснение.
Распилим заряженный большой конденсатор на две части - эти части друг от друга отталкиваются. Значит, электрическая энергия уменьшилась при постоянном заряде, то есть емкость увеличилась.

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение26.03.2021, 11:42 


29/09/17
214
reterty в сообщении #1510893 писал(а):
Однако как я не пытался качественно априорно обьяснить эту закономерность (например, что поверхностная плотность заряда обращается в бесконечность на краях, но несколько уменьшается в центральной части обкладки), у меня ничего путного не вышло. Складывается впечатление, что априорного обьяснения вообще не существует и все решает "счет"....

Рассмотрим разрез конденсатора. Ось $Y$ проходит по центральной оси конденсатора, ось $X$ посредине, между обкладками, параллельно им. Возьмем точку с координатой $(R,0)$ $R=\frac D 2$ и проведем окружность радиуса $r$, $\frac d 2<r<R$. Пустим пробный заряд по этой окружности. Общая работа должна быть равна нулю, поэтому, на участке окружности вне конденсатора, в первом приближении, напряженность поля $E=\frac{u}{2\pi r}$. Потом, интегрируя, можно посчитать энергию поля вне конденсатора и получить формулу, близкую к формуле Кирхгофа.

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение26.03.2021, 14:19 


27/08/16
10711
VASILISK11 в сообщении #1511252 писал(а):
Потом, интегрируя, можно посчитать энергию поля вне конденсатора и получить формулу, близкую к формуле Кирхгофа.


Можно увидеть вывод?

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение27.03.2021, 13:12 
Заслуженный участник


21/09/15
998
reterty, присмотритесь к решению у ЛЛ. Емкость увеличивается за счет дополнительного заряда на внешних сторонах обкладок. И очевидно, этот вклад положителен.
Мне кажется вы искали эту очевидность.
Внутри (между) обкладок не предполагается никакого искажения. Это, конечно, требует обоснования, однако правильно.
У ЛЛ вообще не рассматривается, что происходит на расстоянии $x<d$ от краев. А что там происходит? Напряженность пропорциональна $\frac{1}{\sqrt{xd}}$.
Затем на расстоянии порядка $d$ на внутренней стороне напряженность переходит в $\operatorname{const}+\exp(-kx/d)$, вклад от экспоненты пренебрежимо мал; на внешней стороне зависимость обратно пропорциональная корню из $x$ переходит в $1/x$ (это и рассматривают ЛЛ). Все, что происходит на $x<d$ вносит вклад порядка $2\pi R$, то есть много меньше, чем в формуле Кирхгофа.

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение22.11.2021, 15:40 


22/11/21
1
Не понимаю вывод формулы, подскажите, или где можно найти этот вывод кроме ЛЛ?

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение23.11.2021, 09:35 


17/10/16
5065
reterty
Можно воспользоваться, скажем, тепловой аналогией, в которой потенциал - это температура, плотность потока тепла с поверхности проводника - это плотность заряда на его поверхности, диэлектрик - теплопроводный материал, электрическое поле - поле потока тепла. Вакуум тепла не проводит, как мы это видим на примере идеализированного конденсатора, у которого поле с обратной стороны обкладок просто отрезано.

Довольно очевидно, что теплопоток между двумя пластинами (пропорциональный их заряду) с фиксированной температурой (фиксированная разность потенциалов) тем больше, чем больше теплопроводного материала мы добавим вокруг пластин.

 Профиль  
                  
 
 Re: Емкость плоского конденсатора с учетом краевых эффектов
Сообщение24.11.2021, 16:19 


21/07/20
248
reterty
Вывести формулу Кирхгофа для емкости очень сложно, ЛЛ приводит другую формулу для емкости, ее вывод проще, но тоже не всем студентам доступен.
Но о краевых эффектах в плоском конденсаторе говорят даже в школе. Хотелось бы иметь простое объяснение хотя бы знака поправки. Выше предложено несколько вариантов объяснения. Приведу еще одно.

Рассмотрим заряженный до напряжения U плоский конденсатор. Считаем, что нам известны следующие закономерности:
1) в центральной части конденсатора электрическое поле почти однородное,
2) на внутренних поверхностях обкладок заряд распределен почти однородно в центральной области и возрастает при приближении к краям обкладок,
3) некоторая часть заряда находится на внешних поверхностях обкладок.
Тогда, напряженность поля в центральной области конденсатора
$E_0=U/d$.

Поверхностная плотность заряда в центральной области
$\sigma=\varepsilon_0 E_0$.

Заряд конденсатора
$q>\sigma S$.

Следовательно
$C=\frac{q}{U}>\frac{\sigma S}{U}=\frac{\varepsilon_0 S}{d}$.

Как обычно S - площадь обкладок, d - расстояние между обкладками.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 14 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group