Две частицы массой

каждая, имеющие одинаковые заряды

, удерживаются на расстоянии

друг от друга. После освобождения одной из частиц другую начинают двигать с постоянной
скоростью

в направлении освобожденной. Найти наименьшее расстояние, до которого сблизятся частицы, и работу внешней силы к моменту сближения до этого минимального расстояния.
Думаю идея нахождения минимального расстояния через закон сохранение энергии для системы двух зарядов.
Так как в начале второй заряд был неподвижен, то он будет разгоняться с некоторым ускорением и приобретая скорость равную скорости первой частицы(которую двигают с постоянной скоростью) именно в этот момент и будет минимальное расстояние.
По закону сохранения энергии связывая начальное положении и до минимального расстояния


-минимальное расстояние

-работа внешней силы
Возникает вопрос, как учесть работу внешней силы, действующей на заряд тем самым обеспечивая постоянство скорости