Someone писал(а):
Теорема о том, что счётное объединение счётных множеств счётно, не требует использования аксиомы выбора.
Будьте любезны привести полное доказательство в системе ZF (без аксиомы выбора).
Предъявляю ключевые рассуждения. Детали, если необходимо всегда можно уточнить.
Необходимо без привлечения аксиомы выбора в теории ZF доказать следующее утверждение: Пусть M – счётное множество, каждый элемент m которого – так же счётное множество. Пусть объединение всех элементов m из множества M есть множество U. Тогда множество U счётно.
Если прибегнуть к некоторому простому формальному выражению того, что означает, что «каждое множество m из M счётно», то утверждение формальной теории по этому поводу, т.е. утверждение теории ZF, может быть таким:
(А) «для каждого множества m из множества M существует биекция множества N на m»,
где N – натуральный ряд – множество, существование которого можно вывести без аксиомы выбора, через аксиому бесконечности.
Канторовское доказательство теоремы проводится так, что подразумевается явно или не явно, что каждому элементу m множества M конкретно сопоставлена некоторая индивидуальная, закреплённая за этим элементом функция f, отображающая N на m. В таком рассуждений используется содержательная очевидность, что если мы даём перечисление элементов из M через натуральные числа, то одновременно перечисляем через натуральные числа и функции f.
В формальной теории, ту идею, что за каждым множеством m закреплена биекция f множества N на m, можно выразить так:
(Б) «каждый элемент <m, f> множества M* таков, что f есть биекция N на m»,
<m, f> - упорядоченная пара, элемент множества M*, которое есть подмножество множества M x F, где F – множество функций, и M есть проекция множества M*.
Если «m* = паре <m, f>», то будем считать, что «m* = pr1(m*)», «f = pr2(m*)». Все выражения, взятые в кавычки вида «...», считаем выражениями ZF.
Рассматриваемую теорему, поэтому, выразим в форме:
Теорема. «Если h – биекция N на M*, и для каждого m* из M* f есть биекция N на m, где f = pr2(m*) и m = pr1(m*), то существует биекция N на U».
Сформулированная теорема, с одной стороны, есть теорема ZF, с другой стороны, она так же выражает содержательный смысл теоремы Кантора, подразумевая, что мы каким-то образом уже закрепили функции за соответствующими множествами. Если такого закрепления нет, то теряет смысл и сама теорема Кантора. В частности, формулу (А) всегда можно интерпретировать так, что никакого конкретного закрепления функций за множествами нет, т.е. есть некое общее множество биекций, могущее соответствовать множеству m, но конкретно никакого соответствия не предъявлено. Если это так, то и в теории Кантора невозможно провести требуемое доказательство. Причём, всегда можно интерпретировать рассуждения Кантора как использующие соответствие между множествами и функциями. Однако, у нас имеется часть множеств, например, множество всех конечных ординалов, т.е. N, некоторые конкретные множества счётных ординалов и т. п. для которых указанное соответствие между функциями и множествами достаточно тривиально. Мы можем, поэтому, выстраивать такого рода соответствие и для некоторых множеств, без использования аксиомы выбора, с использованием других аксиом. Но можем, в частности, выстроить обсуждаемое соответствие и используя аксиому выбора. От этого теорема не изменится.
Таким образом, одна и та же содержательная теорема может быть выражена в разных формах формальной теории. Или говоря по-другому: одна и та же формула формальной теории может выражать лишь часть смысла теоремы содержательной математики или близкий смысл теоремы.
Поскольку, сама теорема сформулирована, то для её доказательства достаточно воспользоваться известным отображением N на N x N, как отображением конкретных множеств, схемой аксиом подстановок, и расшифровкой того, что означает выражение «биекция множества X на Y».
Отмечу, что теорема имеет вид "если... , то..." и формула (Б) лишь участвует в посылке теоремы.
Теорема с посылкой (Б) доставляет нам реальное знание того, что происходит, когда какое-то множество счётно. Если мы рассмотрим множества, которые могут быть получены в ZFC без аксиомы выбора, то указанная теорема будет для них верна. Если рассмотрим множества, которые получаются в ZFC с использованием аксиомы выбора, то для них эта теорема будет так же верна. Другое дело, что для частных множеств, чтобы выполнить условие посылки, может потребоваться аксиома выбора. Таким образом, эта теорема доказуема без использования аксиомы выбора вообще для всех множеств.
Мои оппоненты всего лишь приводят пример доказательства, использующий аксиому выбора, но не более.