2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Предел для одномерной потенциальной ямы
Сообщение27.08.2021, 19:10 
amon в сообщении #1529794 писал(а):
Однако, не сказано какого.
Соответственно, нужно что-то предполагать. Можно предположить про невозможность отличить дискретный спектр от непрерывного если уровни расположены достаточно плотно. И можно предположить что невозможно экспериментально наблюдать влияние уровней, вероятность обнаружения частицы на которых слишком мала. А что со статсуммой делать без предположений об измерительной системе? Если мы можем измерять бесконечно точно и бесконечно долго, то мы сможем измерить любой хвост.

-- 27.08.2021, 19:12 --

ОК, подожду публикацию решения через статсумму.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение27.08.2021, 19:23 
Аватара пользователя
realeugene в сообщении #1529795 писал(а):
ОК, подожду пубюликацию решения через статсумму.
Вам в утешение. комбинация $$\left(\frac{\hbar}{L}\right)^2\frac{1}{mkT}$$ по-моему, единственная безразмерная, поэтому все что надо установить, - не стоит ли перед ней какой-нибудь офигенный коэффициент или не стоит ли она в аргументе какой-нибудь не аналитической в нуле функции.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение27.08.2021, 19:26 
amon в сообщении #1529797 писал(а):
Вам в утешение.
Нет-нет, меня утешит только публикация официального решения от ТС. Мы же в олимпиадном разделе. ;)

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение29.08.2021, 15:35 
А если зайти с другого конца - оценить длину когерентности?

Грубая оценка была бы такая

$\displaystyle{\frac{(\Delta p)^2}{2m} = \frac{1}{2}kT},$

$\displaystyle{\Delta p = \sqrt{mkT} = 2\pi h \Delta k = - h\frac{\Delta\lambda}{\lambda^2},}$

$\displaystyle{L_{\text{ког}} = |\frac{\lambda^2}{\Delta\lambda}| = 2\pi\frac{\hbar}{\sqrt{mkT}}.}$

Результат совпадает с "утешительным", коэффициент по-прежнему точно не определён. Интересно, что энергия частицы здесь не играет роли.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение29.08.2021, 22:30 
Аватара пользователя
chislo_avogadro в сообщении #1529906 писал(а):
А если зайти с другого конца - оценить длину когерентности?
Такой способ мне тоже нравится (С). С точностью до двоек (что при таких оценках - копейки) ответ совпадает с полученным из статсуммы, что, впрочем, неудивительно по вышеизложенным причинам.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение29.08.2021, 23:05 
Вот только и длина когерентности не является строгой границей для возможности наблюдения.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение30.08.2021, 16:03 
Без учёта свойств проводимого эксперимента можно получить только грубые оценки, подобные дифракционному пределу в оптике. Но дифракционный предел не ограничивает суперразрешение, хоть заглядывание под него и экспоненциально сложно.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение30.08.2021, 22:18 
realeugene в сообщении #1529942 писал(а):
Вот только и длина когерентности не является строгой границей для возможности наблюдения.

Видимо это тот случай, когда строгая оценка невозможна, но возможна "хорошая", практически полезная. Водится ведь, скажем, ширина гауссианы.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение30.08.2021, 22:43 
Любопытно, какой можно специально поставить эксперимент для отличия распределения частицы в полости от равномерного? Например, обстреливая тонкий слой вблизи стенки полости узким пучком гамма-квантов?

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение31.08.2021, 01:17 
Аватара пользователя
realeugene в сообщении #1530083 писал(а):
Любопытно, какой можно специально поставить эксперимент для отличия распределения частицы в полости от равномерного?
Если чисто умозрительно, то с помощью туннельного микроскопа в принципе можно измерить распределение плотности электрона в яме с субатомным разрешением.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение31.08.2021, 13:31 
Аватара пользователя
Видимо, пора ответ писать. Напоминаю, что требовалось оценить ширину ямы, при которой ее станет невозможно отличить от непрерывной прямой. (За числовыми коэффициентами порядка единицы не очень слежу, поэтому $\sim$ вместо знака равенства.)
Пусть у нас есть бесконечно глубокая потенциальная яма шириной $L.$ Казалось бы, при расширении ямы $L\to\infty$ мы должны плавно перейти к прямой, но хренушки. Состояниями в яме будут
$$\Psi_n(x)=A\sin\frac{\pi n x}{L},\;\text{где}\; n=1,2,\dots$$
Соответствующие энергии в единицах $\hbar=m=1$ будут, естественно,
$$E_n=\left(\frac{\pi n}{L}\right)^2.$$
Из этих состояний довольно сложно построить плоские волны с непрерывным спектром независимо от величины $L.$

Для разрешения сий великой проблемы можно сообразить, что свойства всего определяются вовсе не квантовой механикой, а термодинамикой (почему - написано выше). Значит, если при каких-нибудь $L$ статсуммы частиц в яме и без оной сравняются, то система перестала чувствовать стенки, что бы там не происходило с волновыми функциями. В этом смысле эта оценка похожа на оценку уважаемого chislo_avogadro. В статсумму, как известно, волновые функции вообще не входят.

Итак, для частицы в яме
$$Z\sim\sum_{n=1}^\infty \exp\left(-\beta\left(\frac{\pi n}{L}\right)^2\right)$$
Обозначив
$$a=\beta\left(\frac{\pi}{L}\right)^2\;a\to0\;\text{при}\;L\to\infty,$$
получим
$$Z\sim\operatorname{\theta}_3(0,e^{-a}),$$
где $\operatorname{\theta}_3(u,q)$ -- эллиптическая тета-функция третьего рода.

Нас интересует, как ведет себя $\operatorname{\theta}_3(0,e^{-a})$ при $a\to0$ сверху. В эту сторону переход в учебниках написан - надо перейти от суммирования к интегрированию. Для особо въедливых с помощью бубна и Mathematic'и можно получить разложение $\operatorname{\theta}_3(0,e^{-a})$ (первый член совпадет с результатом интегрирования, что не удивительно):
$$\operatorname{\theta}_3(0,e^{-a})\sim\sqrt{\frac{\pi}{a}}\;\text{при}\;a\to0.$$

Наконец ответ вопрос - когда происходит переход из ямы в прямую (мне лень было оценки делать, проще картинку нарисовать):
Вложение:
2to3.png

График $\operatorname{\theta}_3(0,e^{-a})$ (синяя линия) и ее асимптотика вблизи нуля (желтая линия).

Из картинки видно , что вплоть до точки $a=1,$ а может и до чуть больших $a,$ система ведет себя как частица на прямой.

В размерных единицах
$$a=\left(\frac{\pi\hbar}{L}\right)^2\frac{1}{2mkT}.$$
Условие $a\le 1$ в размерных единицах будет
$$\frac{\pi\hbar}{L}\le\sqrt{2mkT}.$$Последняя формула - оценка размера объекта, начиная с которого при бОльших размерах квантовая механика не нужна.


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение31.08.2021, 19:24 
amon в сообщении #1529791 писал(а):
но зная статсумму мы знаем все.
А как из статсуммы узнать плостность вероятности обнаружения частицы в непосредственной близи возле стенки?

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение01.09.2021, 16:27 
Аватара пользователя
realeugene в сообщении #1530160 писал(а):
А как из статсуммы узнать плостность вероятности обнаружения частицы в непосредственной близи возле стенки?
Вопрос из серии "при какой длине отрезка он превратится в прямую?" Ответ известен - ни при какой. У отрезка всегда есть концы, а у прямой нет. Поэтому измерив плотность на концах всегда получим ноль. Тем не менее, IMHO, исходная задачка осмысленная. Переход от ямы со стенками к бесконечной прямой во всю используется в статфизике и оценки ширины ямы, при которой яму можно считать прямой, я ни где не видел. Кроме того, исходный вопрос (тот, который мне задали) - при какой ширине ямы помещенный в нее электрон перестанет чувствовать ее стенки можно проверить экспериментально, и с приличной точностью ответы совпадают.

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение07.09.2021, 16:48 
Аватара пользователя
Эта задача напомнила мне старую добрую проблему об определении теплоемкости столба газа существенной высоты...

 
 
 
 Re: Предел для одномерной потенциальной ямы
Сообщение07.09.2021, 17:24 
amon в сообщении #1530243 писал(а):
при какой ширине ямы помещенный в нее электрон перестанет чувствовать ее стенки
У ямы еще есть высота барьера, соответственно, автоматически возникает вопрос по этому параметру - при какой высоте потенциального барьера электрон перестает чувствовать его верхушку

 
 
 [ Сообщений: 42 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group