1. При разработке чего-то нового могут быть разработаны и новые методы, потом применимые в другой области. Иначе они могли быть и не придуманы ...
Так-то это верно, но в таком случае упомянутые мной области просто выдающиеся по своей уникальности, в том смысле, что со времен Эмми Нетер и Бурбаков развились в огромные теории и так и не дали выхлопа в виде методов, применимых в других в областях... К слову, Гротендику в свое время расшатали нервы еще и тем, что спрашивали насчет практического применения его теорий. Несправедливо, в общем, он ведь не только эзотерикой занимался, он еще в начале своей карьеры функциональный анализ развивал... Но вот, мужики понаписали на французском многотомные EGA, SGA, что аж Толстой бы обзавидовался
теории конца краю не видно, а мотивировки ноль.
В контрасте с этим не менее абстрактные, казалось бы, теории: топология на фреймах и локалях
давно практически полезный симбиот с мат. логикой; обобщенные функции вообще прямиком из приложений выросли
не знаю как там Шварц, а Соболев работал в Сейсмическом институте... Гармонический анализ, теория интерполяций - к ним тоже подобных вопросов не возникает, потому что у них всегда есть такой контекст, что они могут привести к тонким оценкам решений полезных PDE. Да и упомянутая вами криптография - у нее есть контекст того, что ключи на эллиптических кривых сложно сломать, отсюда и польза, и все вопросы сразу отпадают. А при работе, к примеру, с дедекиндовыми кольцами такого контекста попросту нет... одни дедекиндовы кольца и все... набор аксиом...
(Пример привести не могу, вертится про теорию чисел, методы которой неожиданно дали сильный толчок в другой области, но деталей не помню.)
Из такого я вспомнил графы-экспандеры... Но у них все связи только с упомянутой эзотерикой...
Вот бы человек, который видит ширше, объяснил чтоли людям выходы из этих теорий во что-то человеческое... Но, видать, слишком многого хочу
слишком мало специалистов по абстрактным областям...