2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 11:50 
Заслуженный участник
Аватара пользователя


23/08/07
5493
Нов-ск
kotenok gav в сообщении #1520470 писал(а):
TOTAL, да. Но в среднем вторая пальма даст орех позже, чем первая.
Моряк не тратил 30 минут, а мгновенно оказался на острове. Сколько в среднем надо ждать орех от первой пальмы, сколько от второй?

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 11:56 
Заслуженный участник
Аватара пользователя


01/09/13
4656
kotenok gav в сообщении #1520464 писал(а):
Если нам выпал первый отрезок, то под первой пальмой моряк получит кокос за $1-x$ часов, а под второй - через $s-x$, что в среднем составляет $\dfrac{x+2}2-x=1-0.5x$.

Уточните, пожалуйста, среднее чего Вы считаете?

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 12:08 


21/05/16
4292
Аделаида
TOTAL в сообщении #1520472 писал(а):
Моряк не тратил 30 минут, а мгновенно оказался на острове. Сколько в среднем надо ждать орех от первой пальмы, сколько от второй?

Ну, из моего решения - 50 минут от первой и 80 от второй.
Geen в сообщении #1520474 писал(а):
Уточните, пожалуйста, среднее чего Вы считаете?

Среднее $s-x$.

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 13:39 
Заслуженный участник
Аватара пользователя


23/08/07
5493
Нов-ск
kotenok gav в сообщении #1520475 писал(а):
TOTAL в сообщении #1520472 писал(а):
Моряк не тратил 30 минут, а мгновенно оказался на острове. Сколько в среднем надо ждать орех от первой пальмы, сколько от второй?

Ну, из моего решения - 50 минут от первой и 80 от второй.
От первой - это значит от той же самой. Минимум час, а не 50 минут.

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 14:51 


21/05/16
4292
Аделаида
Нашёл ошибку. Правильно, вроде бы, так:

$f=0$ или $s=0$ (не оба). Если прошло $x$ часов, то, если $f=0$, $s\geq x$, а если $g=0$, $g\geq x$. Если $x\geq1$, описанная ситуация невозможна. Значит, $x<1$.
У нас есть отрезки $f=0, x\leq s<2$ и $s=0, x\leq f<1$. Соотношение их длин составляет $2-x$ к $1-x$. Значит, вероятность того, что нам выпал первый отрезок (т.е. первая пальма - быстрая) равна $\dfrac{2-x}{3-2x}$, а того, что второй - $\dfrac{1-x}{3-2x}$.
Если нам выпал первый отрезок, то под первой пальмой моряк получит кокос за $1-x$ часов, а под второй - через $s-x$, что в среднем составляет $\dfrac{x+2}2-x=1-0.5x$.
Если нам выпал второй отрезок, то под первой пальмой моряк получит кокос за $2-x$ часов, а под второй - через $f-x$, что в среднем составляет $\dfrac{x+1}2-x=0.5-0.5x$.
Значит, среднее время получения кокоса под первой пальмой составляет $(1-x)\dfrac{2-x}{3-2x}+(2-x)\dfrac{1-x}{3-2x}=\dfrac{4-6x+2x^2}{3-2x}$, а под второй - $(1-0.5x)\dfrac{2-x}{3-2x}+(0.5-0.5x)\dfrac{1-x}{3-2x}=\dfrac{2.5-3x+x^2}{3-2x}$.
Значит, нам надо сравнить числа $4-6x+2x^2$ и $2.5-3x+x^2$. Второе число больше тогда и только тогда, когда $x^2-3x+1.5$ отрицательно, т.е. $x>\dfrac{3-\sqrt3}2$ (т.к. $x$, очевидно, меньше $x>\dfrac{3+\sqrt3}2$).
Значит, если $x$ меньше этого числа, то моряк должен выбрать вторую пальму, если больше, то первую, а если равно, то без разницы.

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 15:27 
Заслуженный участник
Аватара пользователя


23/07/08
10908
Crna Gora
Geen в сообщении #1520471 писал(а):
И вообще, гонимый жаждой моряк за полчаса пройдёт не менее 3км - разглядеть с такого расстояния пальму, а уж тем более что там с чего падало.... :mrgreen:
Он ползёт...

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 16:13 
Заслуженный участник
Аватара пользователя


23/08/07
5493
Нов-ск
lel0lel в сообщении #1520418 писал(а):
Под какой из пальм нужно караулить кокос, чтобы как можно быстрее напиться
Если пальмы стоят рядом, то без разницы. А если между пальмами расстояние в 15 минут, то эти минуты надо включить в условие и указать начальное положение моряка. Задача становится сложной, особенно для измученного жаждой моряка.

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 16:34 
Заслуженный участник
Аватара пользователя


01/09/13
4656
TOTAL в сообщении #1520510 писал(а):
А если между пальмами расстояние в 15 минут

Да пусть они вообще в противоположных направлениях... а пока он ползёт к пальме, в момент $y$ падаёт второй кокос... :mrgreen:

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 16:55 
Заслуженный участник
Аватара пользователя


11/03/08
9904
Москва
По-моему, типичная задача на теорему Байеса. Априорные вероятности по $\frac 1 2$, событие A составное, включает два независимых события: $A_1$падение кокоса с первой пальмы и $A_2$непадение в течение получаса со второй. Момент начала наблюдения считаем распределённым равномерно.
Если первая пальма "быстрая", то вероятность падения кокоса $P(A_1)$равна $\tau$, где "тау" - продолжительность падения кокоса с пальмы, выраженная в часах. Точное значение продолжительности не важно, поскольку в ходе вычислений она сократится. Вероятность непадения кокоса со второй пальмы за полчаса $P(A_2)$равна $\frac 3 4$
Если вторая пальма "быстрая", то $P(A_1)=\tau/2$, $P(A_2)=\frac 1 2$
В общем, 3:1, что "быстрая" первая пальма.

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 18:35 
Заслуженный участник
Аватара пользователя


23/07/08
10908
Crna Gora
Задачу можно слегка модифицировать (и добавить драматизма) так. Если моряк не напьётся за время $T$, считая от момента, когда достиг выбранной пальмы, он погибнет. Каковы у моряка шансы остаться в живых в зависимости от $T$ и выбранной пальмы (первая/вторая)?
Тут уже «не до жиру, быть бы живу».

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 21:07 


10/03/16
4444
Aeroport
Евгений Машеров в сообщении #1520514 писал(а):
Априорные вероятности по $\frac 1 2$


Мой исходный вопрос как раз был таким -- если использовать в задаче вероятностный подход, нужно откуда-то брать априорные вероятности, которые скорее всего автор задачи положил по $\frac 1 2$. Я считаю, что это неправильно. Какова априорная вероятность того, что у меня во дворе завтра приземлится боевой вертолет военно-воздушных сил Индонезии? $\frac 1 2$ -- либо приземлится, либо нет?

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 21:19 
Заслуженный участник
Аватара пользователя


23/07/08
10908
Crna Gora
ozheredov в сообщении #1520536 писал(а):
априорные вероятности, которые скорее всего автор задачи положил по $\frac 1 2$
А какие там вероятности положены по $\frac 1 2$?

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 21:42 


10/03/16
4444
Aeroport
svv
Ну, типа, какая пальма slow и какая fast... От этого будет зависеть множество, на котором определены фазы пальм. Можно наверное строить с.в. по-другому, но мы, кажется, снова упремся в априорные вероятности, которые нужно будет волевым усилием задавать. Или я опять не разобравшись?

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 22:13 
Заслуженный участник
Аватара пользователя


23/07/08
10908
Crna Gora
Ну, одна пальма fast, другая slow, а где тут момент произвольного выбора? Я имею в виду, при построении вероятностного пространства.

-- Вс май 30, 2021 22:14:52 --

P.S. Я понимаю, бывают такие ситуации в математике, когда вроде всё расписано, а нет уверенности, хоть ты тресни.

 Профиль  
                  
 
 Re: Кокосовые пальмы
Сообщение30.05.2021, 22:35 


10/03/16
4444
Aeroport
svv
У нас есть некое наблюдение (упало, пока шел не падало, и т.п.), вероятность которого такая, если пальма, с которой упало, Fast, а вторая пальма Slow, и другая, ежели наоборот. И если применять Байеса, то вот эти два события 1F2S и 1S2F -- должны иметь некую априорную вероятность.

P.S. Не уверен на 100% в том что написал. Критикуйте )

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 59 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group