Примерно выглядит это так:
первое число диапазона делится на 2 и на 5,
второе - на 3,
третье на 2 и на 19, и на 29
Уже эти три условия дают выбор всего одного из 16530 чисел. А если добавите ещё пару условий, лучше про делимость на большие числа, то уже и перебор можно запустить.
Для примера рассмотрим, как выглядит большой интервал "в цепочках". (Данный вариант метода предложил -
vorvalm)
23#. d=40,
Наша задача состоит в том, чтобы используя только простые числа, входящие в праймориал, вычеркнуть максимальное количество последовательных чисел.
Учитываем то, что маленькие простые числа вычеркивают несколько чисел в интервале - образуя так называемую "цепочку".
Рассмотрим на реальном примере, как это примерно выглядит.
Возьмем интервал, который начинается с 20332471. Обозначим А=20332471
По делимости на 2 и на 3 - число А+1 делится на 2, число А+2 делится на 3, А+3 - делится на 2, А+4 - НЕ кратно 2 и 3, А+5 - кратно 2 и 3, А+6 - НЕ кратно 2 и 3, и т.д.
Таким образом, по делимости на 2 и 3 у нас остаются невычеркнутые "окошки" - 4, 6, 10, 12, 16, 18, 22, 24, 28, 30, 34, 36.
Теперь рассмотрим делимость на 5.
Для пятерки существует только два варианта - или занять окошко 4, или окошко 6.
В данном случае, А+4 - кратно 5. Тогда автоматически пятерка вычеркивает окошки 24 и 34, из еще невычеркнутых.
Делимость на 7. Вернемся к ней чуть позже.
Делимость на 11.
Для одиннадцати есть только два варианта - 6 и 10.
Если выберем 6, то одиннадцать вычеркивает еще одно окошко среди оставшихся, - 28. А если выберем 10, то других вариантов не остается. С точки зрения максимизации вычеркивания, выбираем вариант 6.
К этому моменту 5(4, 24, 34), 7(.,.,.), 11(6, 28)
Для 13 остается свободным только А+10.
Получаем 13(10, 36).
К этому моменту 5(4, 24, 34), 7(.,.,.), 11(6, 28), 13(10, 36)
Т.е., у нас уже вычеркнуты 4, 6, 10, 24, 28, 34, 36.
Итого:
4,
6,
10, 12, 16, 18, 22,
24,
28, 30,
34,
36.
Очевидно, что 17, 19, 23 - не смогут вычеркнуть по два окошка.
Теперь можно вернуться к 7.
Оказывается, есть только одно положение, где 7 может вычеркнуть два еще пустых окошка - А+16. Имеем 7(16, 30).
В результате, у нас остались три пустых окна (12, 18, 22), на которых надо разместить три оставшихся простых 17, 19, 23.
Получается шесть вариантов
17(12), 19(18), 23(22)
17(18), 19(12), 23(22)
17(12), 19(22), 23(18)
17(22), 19(18), 23(12)
17(22), 19(12), 23(18)
17(18), 19(22), 23(12)
---
Как видно, расположение всех цепочек никак логически не детерминировано.
"Так получается" - в случае 23#
Чем больше праймориал, тем больше будет возникать вариаций взаимного расположения цепочек. И тем больше будет максимумов Якобсталя, отличающихся от максимумов по стыкам предыдущих праймориалов.
-- 08.04.2021, 22:20 --Переписал программу расчёта взаимно простых с праймориалом чисел на асме, запустил, работает в 25 раз быстрее оптимизированного PARI/GP и в 200 раз быстрее неоптимизированного (оптимизированный не находил небольшие разности, только превышающие разности для предыдущего простого). Заодно сделал вывод всех встреченных разностей ...
Имеет ли смысл обратиться в OEIS - для уточнения их таблицы?
На форуме, кажется, кто-то присутствует из редакции.
Или там как-то специально указаны НЕ минимальные значения позиций?