В смысле, разрешены или нет нули или единицы в периоде?
Да. В зависимости от соглашений, либо
, либо
не является корректной записью одного и того же числа, либо они являются записью одного и того же числа.
Это-то понятно, но доказательство теоремы 4 ведется явно через дробные части двоично-рациональных чисел, а в ее условии сказано про множество
всех бесконечных последовательностей нулей и единиц, хотя в окончании доказательства теоремы сказано то же самое, что говорите вы:
А-а-а. Это получается, из множества всех бесконечных последовательностей нулей и единиц, назовем его
удаляются все такие, которые оканчиваются на 1 в периоде (если 1 в периоде запрещено), при этом множество этих подлежащих удалению бесконечных последовательностей счетно, поэтому мощность части множества
, оставшейся после удаления этого множества бесконечных последовательностей, будет равна мощности исходного множества
, а, ввиду возможности двоякого представления двоичных дробей (я не говорю о том, как обстоят дела после принятия соглашения, что разрешено - нули или единицы в периоде, я говорю, как обстоят эти дела до принятия этого соглашения) в части множества
, оставшейся после удаления этого множества бесконечных последовательностей, останется ровно 1 бесконечная последовательностей, соответствующая каждой удаленной последовательности. Не тождественная этой удаленной последовательности, а определенным образом ей соответствующая. И, таким образом, получится, что мощность множества оставшихся бесконечных последовательностей нулей и единиц будет все равно совпадать со множеством точек интервала
. Правильно же?
-- 12.03.2021, 18:27 --Она доказывается не прямым сопоставлением двоичных последовательностей числам. Мы разбиваем все последовательности на два множество, первое из которых равномощно числам, а второе счетно. Ну а множество всех последовательностей равномощно первому множеству по теореме 3.
Да-да, я написал, как думаю. Проверьте, пожалуйста.