2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8  След.
 
 Re: Сила Архимеда и вечный двигатель
Сообщение27.02.2021, 15:46 


03/04/12
308
nds, да, почти то же самое, что написал sergey zhukov, только другими словами.
Переворачивает не сила, а момент, ну не важно. Важно понять, что внизу каким-то образом мы увеличиваем вес вытесненной цилиндром воды, работая против давления воды, переворачивая или каким-то другим способом выдвигая поршень. Понятно, чем глубже цилиндр, тем большую надо совершить работу при вытеснении одного и того же объема воды, поскольку там давление больше. Ну и не трудно посчитать, что это работа будет больше той, что совершит этот раздутый цилиндр, поднимаясь вверх. То есть тут фишка в том, что чем глубже приходится переворачивать цилиндр, тем это затратнее, поэтому увеличение цилиндров, не помогает.

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение27.02.2021, 16:16 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
Фишка в том, что у цепочки цилиндров, соединенных нитью, всегда есть точка равновесия (возможно, не одна), в которой силы от правой и левой ветки уравновешивают друг друга, и при малом отклонении система в эту точку возвращается.

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение27.02.2021, 19:18 
Аватара пользователя


22/07/11
868
sergey zhukov в сообщении #1506834 писал(а):
Вес - это то, что весы показывают в атмосфере (в килограммах), а масса - это то, что они показывают в вакууме (тоже в килограммах). Тут это так можно понимать.
Вес - это вообще не масса, у этих физических величин даже размерности разные. И килограммы разные и пишутся по-разному "кГ" и "кг".

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение27.02.2021, 19:22 


17/10/16
4915
Amw
Совершенно верно.

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение27.02.2021, 19:26 
Аватара пользователя


22/07/11
868
Александрович в сообщении #1506445 писал(а):
...вечный двигатель.
Почему не будет работать?
Потому что это "вечный двигатель", а вечные двигатели не работают!!! :lol:

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение27.02.2021, 21:08 


23/04/17
305
Россия
И всё же ...
При повороте можно изменить только внутреннюю энергию (сжать пружину, поднять груз, например). При обратном повороте эта энергия высвободится.

А у Архимеда условие равновесия перевёрнутых емкостей, наверное, как то так будет выглядеть.
Изображение

Это стакан массой $m$ уравновесили воздухом объёмом $V$ на глубине с давлением $P_1$ и перевернули.
Если такие стаканы погрузить чуть глубже - они начнут тонуть. И наоборот, если поднять на глубину с меньшим давлением - они начнут всплывать.
И никакого изменения веса при перевороте.

Кстати, воздух из перевернутого стакана под водой сможет выйти только за счёт неустойчивости. Точно так же как вода из перевернутого стакана не выливается на атмосфере.

Система с поплавками, по-моему, абсолютно то же самое. Там ось равновесия сложнее найти.

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение28.02.2021, 01:28 


17/10/16
4915
nds
Так вы нарисовали просто стакан с тяжелым дном, т.е. поршень у вас приклеен к дну стакана. Конечно, если его перевернуть дном вниз, воздух выйдет и он утонет. Выше речь идет о цилиндре с подвижным тяжелым поршнем на пружине. Если его перевернуть поршнем вверх, то поршень сжимает пружину, обьем воздуха в цилиндре уменьшается и сила Архимеда на всю конструкцию действует меньше. А если перевернуть наоборот - поршень растягивает пружину и обьем воздуха увеличивается, сила Архимеда тоже увеличивается. Это amon хорошо нарисовал.

Элемент, обьем которого (а значит, и сила Архимеда) зависит от его ориентации под водой, возможен.

Да, если его крутить на одной глубине, то работа на его полный поворот получается нулевой. Но ведь в этом двигателе половина оборота элемента происходит на большой глубине, а другая половина поворота - на малой. В этих условиях положительная работа затрачивается и там и там. Это не то же самое, что повернуть его на полный оборот одной глубине.

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение28.02.2021, 09:09 


23/04/17
305
Россия
sergey zhukov в сообщении #1506915 писал(а):
Так вы нарисовали просто стакан с тяжелым дном, т.е. поршень у вас приклеен к дну стакана.

Да, вот воды долил.
Изображение
Пружинку не стал дорисовывать, она в воздухе внутри стакана. Стакан стоит на линии с давлением $P_1$. Но можно заметить, что стакан скорее висит на воздухе который внутри в нем.
Да, я не учитываю здесь изменение плотности воды по глубине и изменение давления воздуха внутри стакана за счёт веса самого воздуха.
Но воздух ни за что не выйдет если стакан переворачивать вместе с плоскостью $P_1$.

Ещё раз отмечу. Стакан висит на плоскости с давлением $P_1$. Ни всплывает ни тонет.
Если его немного утопить - то объём уменьшится и стакан начнет тонуть.
И наоборот, если чуть чуть приподнять над давлением $P_1$ - стакан начнет всплывать.
И это действительно для обоих стаканов.

sergey zhukov в сообщении #1506915 писал(а):
Но ведь в этом двигателе половина оборота элемента происходит на большой глубине, а другая половина поворота - на малой. В этих условиях положительная работа затрачивается и там и там.

В потенциальном поле работа сил поля на замкнутом пути равна нулю.
Объём изменяется только у воздуха. Железо крутить на разной глубине - одинаково.

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение28.02.2021, 09:44 


03/04/12
308
Если все-таки кому-то интересно, что я пишу…
Задача про закон Архимеда, а закон Архимеда это про вытесняемый объем жидкости, которая находится в гравитационном поле. Если на какой-то глубине вы увеличиваете объем тела, то вытесняете жидкость. Представьте себе, что все происходит в каком-нибудь баке, тогда вытесняя жидкость, вы поднимаете эту жидкость с глубины, где находится тело, на поверхность. Почему? Потому что в баке уровень жидкости поднимается, поэтому вы поднимаете жидкость с глубины именно на поверхность. Поднимая тело с глубины, вы опускаете жидкость, которая замещает тело, которое уходит с глубины. Поэтому увеличивая объем тела на некоторой глубине, вы производите работу по подъему жидкости, соответствующего объема, на поверхность.
Как вы это делаете, совершенно не важно, поворачивая цилиндр с поршнем, химией или электричеством…

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение28.02.2021, 09:53 


23/04/17
305
Россия
schoolboy в сообщении #1506926 писал(а):
Поэтому увеличивая объем тела на некоторой глубине, вы производите работу по подъему жидкости, соответствующего объема, на поверхность.

При этом уровень мирового океана может и на диаметр электрона не подняться.
Работа производится той же потенциальной силой а не внешней и на поверхности всё аннулируется.

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение28.02.2021, 10:27 
Аватара пользователя


22/07/11
868
schoolboy в сообщении #1506926 писал(а):
Поэтому увеличивая объем тела на некоторой глубине, вы производите работу по подъему жидкости, соответствующего объема, на поверхность.
"увеличивая объем тела на некоторой глубине, вы производите работу" равную давлению на этой глубине, умноженному на увеличиваемый объем. При подъеме несжимаемой жидкости работа не совершается.
nds в сообщении #1506927 писал(а):
...уровень мирового океана может и на диаметр электрона не подняться... ...и на поверхности всё аннулируется.
Т.е. Земля кажется плоской? :lol:

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение28.02.2021, 10:44 


03/04/12
308
Amw в сообщении #1506936 писал(а):
При подъеме несжимаемой жидкости работа не совершается.

Это что-то новое, при подъеме невесомой, может быть и не совершается, но где взять невесомую. Бесплатно в гравитационном поле любой вес не поднимается, жидкость это или твердое тело все равно

-- 28.02.2021, 10:54 --

nds в сообщении #1506927 писал(а):
При этом уровень мирового океана может и на диаметр электрона не подняться.

Причем тут диаметр электрона? Какая разница, океан или бак, просто в баке нагляднее. Увеличиваете объем тела, на глубине в жидкости, уровень воды в баке поднимается. Вес добавочного слоя на поверхности как раз и равен весу воды, у которой объем тот, что увеличили у тела, который на глубине. Океан просто очень большой бак, на молекулу в океане, на миллионную молекулы, какая разница, причем тут молекулы, электроны…

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение28.02.2021, 11:13 
Аватара пользователя


22/07/11
868
schoolboy в сообщении #1506937 писал(а):
...где взять невесомую. Бесплатно в гравитационном поле любой вес не поднимается, жидкость это или твердое тело все равно
А сколько весит единица объема жидкости внутри этой же жидкости? :facepalm:

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение28.02.2021, 11:23 


17/10/16
4915
schoolboy
Конечно, вы все правильно пишете. Работа расширения на глубине равна $A=P\delta V$. Она должна быть проделана каким-то образом.

Можно себе представить, что мы просто руками нажимаем на поршень цилиндра в верхней точке (и защелкиваем его в состоянии малого обьема), а в нижней точке наоборот, руками вытаскиваем его из цилиндра наружу (и защелкиваем в состоянии большого обьема).

Для простоты представим, что в цилиндре вообще вакуум и никаких пружин нет, а верхняя точка цепи находится на поверхности жидкости (атмосферного давления нет). Тогда в верхней точке обьем цилиндра можно сделать нулевым, не затратив никакой работы. А в нижней точке на глубине $h$ работа на расширение обьема цилиндра равна $A=\rho gh\delta V$. Вот эту работу мы должны выполнить, чтобы цилиндр из тонущего превратился в всплывающий.

 Профиль  
                  
 
 Re: Сила Архимеда и вечный двигатель
Сообщение28.02.2021, 11:30 
Аватара пользователя


22/07/11
868
sergey zhukov в сообщении #1506942 писал(а):
schoolboy
Конечно, вы все правильно пишете. Работа расширения на глубине равна $A=P\delta V$.
Это не он пишет - это я...
sergey zhukov в сообщении #1506942 писал(а):
$A=\rho gh\delta V$. Вот эту работу мы должны выполнить, чтобы цилиндр из тонущего превратился в всплывающий.
Да, т.е. работа по изменению объема зависит от глубины. Отсюда и приговор.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 116 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group