2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Решение трудного дифференциального уравнения
Сообщение16.12.2020, 21:09 


21/01/09

133
Возник такой вопрос: существует ли решение уравнения
$\operatorname{div}\operatorname{grad} f(r) + k \cdot f^{3}(r) = 0$
Действительная переменная r принадлежит интервалу от нуля до (плюс) бесконечности, например, это расстояние от нулевой точки в трёхмерном пространстве. Действительный постоянный множитель k может быть положительным или отрицательным, наибольший интерес представляет положительный, если это меняет характер решения. f(r) искомая функция.
Для уравнения $\operatorname{div}\operatorname{grad} f(r) + k^{2} \cdot f(r) = 0$
решение находится в виде $f(r) = \frac{\sin(k \cdot r)}{r}$:
$\operatorname{div}\operatorname{grad} f(r) = f
Уравнение $\operatorname{div}\operatorname{grad} f(r) + k^{2} \cdot f^{5}(r) = 0$ решается так:
$f(r) = \sqrt{R^{2} + r^{2}}^{-1}$ где $R^{2} = \frac{k^{2}}{3}$
$\operatorname{div}\operatorname{grad} f(r) = f
Но если член справа функция в третьей степени, а не первой или пятой,
кажется не получится выразить решение через элементарные функции.
Тригонометрические и экспоненты-логарифмы явно не подходят, они только для первой степени.
Может существуют какие-то сложные рекурсивные многочлены или дроби для таких случаев,
наподобие того, как определяются множители волновых функций? Буду благодарен за помощь.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение16.12.2020, 22:27 
Заслуженный участник


03/01/09
1701
москва
Предположим, что $r$ - это радиальная переменная в цилиндрической системе координат (т.е. - расстояние от точки до оси $z$), и $f$ зависит только от этой координаты. В этом случае уравнение имеет вид: $$f''(r)+\frac 1rf'(r)+kf^3(r)=0$$и имеет, например, такое решение $f(r)=\dfrac 1{\sqrt {|k|}r }, (k<0)$ или (при $k>0) f(r)=\dfrac i{\sqrt kr}$.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение16.12.2020, 23:20 


21/01/09

133
Вы хорошо описали двухмерный случай. Из этого следует, что при k > 0 нет решений в действительных числах, только через комплексные. Но интересует именно трёхмерный вариант. Пусть решение и окажется очень длинным, через какие-то ряды или дроби. Может разделить координатную ось на два участка, близкий (около нуля) и далёкий (стремящийся к бесконечности), со "сшивкой" посередине. Но приближать по обратным степеням r на дальнем участке вряд ли реально. Существует своеобразный разрыв: при $\frac{1}{r}$ лапласиан меньше, чем куб функции, а при $\frac{1}{r^{2}}$ и больших отрицательных степенях r лапласиан становится больше куба.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение17.12.2020, 15:26 
Заслуженный участник
Аватара пользователя


03/06/08
2320
МО
А Вы в сторону инвариантно-групповых решений не смотрели?
Группа, правда, скудная (сдвиги, повороты и растяжение), но все-таки..

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение17.12.2020, 16:26 
Заслуженный участник


25/02/11
1797
Maple как раз пытается решать ОДУ с помощью поиска инвариантов. И есть команды, чтобы вывести инварианты явно. Только в данном случае он ничего не находит.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение17.12.2020, 17:52 
Заслуженный участник
Аватара пользователя


03/06/08
2320
МО
Ну, не знаю, как там мейпл, а, например, можно взять двумерную (под)группу из поворота вокруг оси $z$ и растяжения.
У этой группы будет инвариант $\frac{x^2 + y^2}{z^2}$ и $uz$. Соответственно, ищем решение в виде $uz = v(\frac{x^2 + y^2}{z^2})$.
Подставляем это дело в исходное УЧП и voila - получаем обыкновенный диффур.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение17.12.2020, 20:21 
Заслуженный участник


25/02/11
1797
Я имел в виду ОДУ от одного переменного $r$.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение17.12.2020, 20:59 
Заслуженный участник
Аватара пользователя


03/06/08
2320
МО
А. Я так понял, у хозяина $r$ исходно это $(x, y, z)$.
Уравнение, соответственно, $\Delta u + u^3 = 0$.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение17.12.2020, 22:04 
Заслуженный участник


25/02/11
1797
Для исходного Maple какие-то симметрии находит. И несколько похожих вариантов решений, все через функцию Якоби, например
$$
u \left( x,y,z \right) ={\it C5}\,{\mathrm{JacobiSN}} \left(  \left( 1/2
\,{\frac {\sqrt {2}\sqrt { \left( {{\it C1}}^{2}+{{\it C2}}^{2}+{{
\it C3}}^{2} \right)  \left( {\it C1}\,x+{\it C2}\,y+{\it C3}
\,z+{\it C4} \right) ^{2}}}{{{\it C1}}^{2}+{{\it C2}}^{2}+{{\it 
C3}}^{2}}}+{\it C4} \right) {\it C5},i \right) 
$$

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение17.12.2020, 22:11 
Заслуженный участник
Аватара пользователя


03/06/08
2320
МО
Судя по тому, как в решение вошли $x, y, z$, Maple использовал группу сдвигов.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение17.12.2020, 23:21 


21/01/09

133
Чтобы не путаться с количеством измерений и лапласианом, можно упростить задачу до уравнения:
$y''(x) + \frac{2}{x} \cdot y'(x) + k \cdot y^3(x)=0$
Пытаюсь получить что-то адекватное через автоматические "решалки".
К сожалению, они даже случаи с первой и пятой степенью игнорируют,
или ответ мало похож на сравнительно простые функции, приведенные мной.
Кажется, вместо попыток точно решить лучший выход это приближение.

-- Пт дек 18, 2020 00:43:15 --

Оказывается, такое уравнение классифицируют, как частный случай уравнений Эмдена-Фаулера.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение18.12.2020, 05:49 
Заслуженный участник
Аватара пользователя


03/06/08
2320
МО
Вы, может быть, цель Ваших манипуляций с уравнением немножко осветите?
А то как-то непонятно, чего Вы, собс-но, хотите.
Если надо в элементарных (зачем, кстати? по ходу, а 0 не устроит?), почему не взять одномерное, $u'' + u^3 = 0$?
Заменой $u' = p(u)$ сведем решение к квадратурам и к эллиптическим функциям (формулу привел уважаемый Vince Diesel).

-- Пт дек 18, 2020 07:04:45 --

Двойка, кстати, лишняя.
А $k$ вообще непонятно, для чего таскать, убирается сменой масштаба же.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение18.12.2020, 12:05 
Заслуженный участник


03/01/09
1701
москва
Рискну предположить, что ТС (хотя он этого не говорит ) ищет сферически симметричное решение своего уравнения, поэтому оно и сводится к ОДУ. Но нужны, наверное, дополнительные условия: например, поведение в 0 или на $\infty $.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение18.12.2020, 15:31 


21/01/09

133
Цитата:
цель Ваших манипуляций с уравнением немножко осветите

Физическое моделирование. Искомую функцию можно назвать волновой, хотя она выходит за рамки линейной классики.
Поставлена задача, получится ли при таком уравнении достичь каких-то стабильных состояний, сферически симметричных.
Если прямо запустить численные методы, не факт, что будут найдены все вероятные решения, а хотелось бы.
При первой степени в правом члене уравнения функция имеет бесконечное множество экстремумов,
она убывающая по модулю периодическая. При пятой степени только один экстремум в нулевой точке.
Что будет для третьей, нереально предсказать.
Цитата:
Если надо в элементарных

Скорее в удобных для вычислений. Всякие Гамма и Дельта функции это плохо.
Вот аппроксиманты Паде прекрасный вариант.
Цитата:
Двойка, кстати, лишняя

С единицей получится двухмерный случай вместо трёхмерного.
Цитата:
дополнительные условия: например, поведение в 0 или на $\infty$

На бесконечности функция стремится к нулю, скорее всего как $\frac{1}{x}$,
учитывая схожие решения для первой и пятой степени. Для первой степени функция периодическая,
и в среднем нулевая, но её квадрат всё равно пропорционален $\frac{1}{x^2}$
Какое поведение около нуля, опять же, по аналогии можно предположить, что гладкий экстремум, с нулевой производной.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение19.12.2020, 02:27 


21/01/09

133
Чтобы завершить тему: докопался я, что уравнения такого рода называются Лейна-Эмдена. Аналитические решения существуют только для первой, пятой (и ещё нулевой) степени. В остальных случаях применимы лишь численные методы, и можно найти рекуррентные соотношения между членами ряда. Но выше пятой степени кажется решения прерываются, а от первой до пятой непрерывные (степень может быть действительной, а не целой). MathCAD строит график для третьей степени что-то наподобие периодической функции, но с постепенно увеличивающимся периодом. А при попытке построить для седьмой степени график никак не приблизится к нулю, даже при огромных аргументах, и возможно там ненулевая асимптота.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Andrei P


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group