2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Решение трудного дифференциального уравнения
Сообщение19.12.2020, 02:37 
computer в сообщении #1497134 писал(а):
Чтобы завершить тему: докопался я, что уравнения такого рода называются Лейна-Эмдена. Аналитические решения существуют только для первой, пятой (и ещё нулевой) степени.
Да, если речь идет о сферически-симметричных решениях. Но вы в том, что вас интересуют именно они, пока так и не признались. :-)

А так, да, это уравнение Пуассона для самогравитирующего политропного шара с индексом политропы, равным показателю степени во втором члене. Соответственно, ими и занимались главным образом в астрофизических приложениях.

 
 
 
 Re: Решение трудного дифференциального уравнения
Сообщение19.12.2020, 18:44 
Аватара пользователя
Если речь таки про ОДУ, то имею два соображения: 1) поискать в Зайцев, Полянин, 2) группа растяжений $x\frac{\partial}{\partial x} - u\frac{\partial}{\partial u}$ наследуется при переходе к сферически симметричному случаю, так что порядок уравнения, как минимум, снижается на единичку.

 
 
 [ Сообщений: 17 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group