Интересно было посмотреть на распределение чисел из числовой последовательности 196, которые начинают читаться от начала и от конца одинаково до заданного количества цифр. Примерно так:
Код:
\\ Программа просеивания чисел последовательности 196, оставляет числа, которые стремятся к палиндрому
\\ Печатает результаты с заданным шагом количества итераций
x=196; \\ первое число последовательности
li=10; \\ количество крайних цифр числа (от начала и от конца)
sgn=1; \\ переменная количества знаков числа
n=0; \\ переменная количества итераций
m=0; \\ переменная количества выпадений
it=500; \\ интервал итераций
{while(sgn<10000, \\ предельное количество знаков числа
sgn+=1; E=10^sgn;
while(x<E,
n+=1; e=0; k=0;
d=digits(x); x+=fromdigits(Vecrev(d));
d1=digits(x); i=#d1; if(li>i, break);
while(e<li,
e+=1; ei=i-e+1; a=d1[e]; b=d1[ei];
if(a==b, k+=1); if(k==li, m+=1);
);
if(n==it, sh=m/n; print;
print1 ("extreme=", e, ", iterations=", n, ", signs=", sgn, ", score=", m, ", share=");
printf("%0.5f", sh); it+=500);
);
);
}
extreme=10, iterations=500, signs=216, score=1, share=0.00200
extreme=10, iterations=1000, signs=411, score=4, share=0.00400
extreme=10, iterations=1500, signs=621, score=7, share=0.00467
extreme=10, iterations=2000, signs=834, score=7, share=0.00350
extreme=10, iterations=2500, signs=1049, score=11, share=0.00440
extreme=10, iterations=3000, signs=1268, score=11, share=0.00367
extreme=10, iterations=3500, signs=1469, score=13, share=0.00371
extreme=10, iterations=4000, signs=1671, score=15, share=0.00375
extreme=10, iterations=4500, signs=1884, score=16, share=0.00356
extreme=10, iterations=5000, signs=2088, score=18, share=0.00360
extreme=10, iterations=5500, signs=2298, score=18, share=0.00327
extreme=10, iterations=6000, signs=2501, score=20, share=0.00333
extreme=10, iterations=6500, signs=2703, score=22, share=0.00338
extreme=10, iterations=7000, signs=2917, score=23, share=0.00329
extreme=10, iterations=7500, signs=3133, score=23, share=0.00307
extreme=10, iterations=8000, signs=3340, score=25, share=0.00313
extreme=10, iterations=8500, signs=3536, score=27, share=0.00318
extreme=10, iterations=9000, signs=3733, score=30, share=0.00333
extreme=10, iterations=9500, signs=3942, score=31, share=0.00326
extreme=10, iterations=10000, signs=4158, score=34, share=0.00340
extreme=10, iterations=10500, signs=4349, score=36, share=0.00343
extreme=10, iterations=11000, signs=4552, score=40, share=0.00364
extreme=10, iterations=11500, signs=4764, score=43, share=0.00374
extreme=10, iterations=12000, signs=4971, score=44, share=0.00367
extreme=10, iterations=12500, signs=5179, score=48, share=0.00384
extreme=10, iterations=13000, signs=5386, score=49, share=0.00377
extreme=10, iterations=13500, signs=5596, score=50, share=0.00370
extreme=10, iterations=14000, signs=5800, score=53, share=0.00379
extreme=10, iterations=14500, signs=6008, score=55, share=0.00379
extreme=10, iterations=15000, signs=6212, score=57, share=0.00380
extreme=10, iterations=15500, signs=6426, score=59, share=0.00381
extreme=10, iterations=16000, signs=6631, score=60, share=0.00375
extreme=10, iterations=16500, signs=6841, score=61, share=0.00370
extreme=10, iterations=17000, signs=7044, score=63, share=0.00371
extreme=10, iterations=17500, signs=7243, score=64, share=0.00366
extreme=10, iterations=18000, signs=7455, score=65, share=0.00361
extreme=10, iterations=18500, signs=7660, score=66, share=0.00357
extreme=10, iterations=19000, signs=7872, score=68, share=0.00358
extreme=10, iterations=19500, signs=8081, score=69, share=0.00354
extreme=10, iterations=20000, signs=8295, score=70, share=0.00350
extreme=10, iterations=20500, signs=8496, score=72, share=0.00351
extreme=10, iterations=21000, signs=8707, score=74, share=0.00352
extreme=10, iterations=21500, signs=8926, score=74, share=0.00344
extreme=10, iterations=22000, signs=9135, score=75, share=0.00341
extreme=10, iterations=22500, signs=9345, score=79, share=0.00351
extreme=10, iterations=23000, signs=9552, score=81, share=0.00352
extreme=10, iterations=23500, signs=9754, score=83, share=0.00353
extreme=10, iterations=24000, signs=9958, score=86, share=0.00358
Этот пример показывает, что при разбиении всего числа итераций 24000 на равные интервалы по 500 итераций получаем для количества крайних цифр 10:
- количество знаков чисел с каждым шагом увеличивается примерно на 210;
- количество выпадений при этом прибавляет примерно 2;
- доля выпадений стремиться к среднему примерно 0,0035.
Похоже, что график уже не нужен.
Пока нет идеи, что делать дальше с этими числами. Возвращаюсь к исследованию разложения на палиндромы.