2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 49, 50, 51, 52, 53, 54, 55 ... 58  След.
 
 Re: Обсуждение и разбор марафонских задач
Сообщение01.11.2020, 15:58 
Заслуженный участник


27/06/08
4063
Волгоград
===========ММ259===============

ММ259 (8 баллов)

Может ли треугольник с вершинами в центроиде и центрах вписанной и описанной окружностей некоторого треугольника быть
a) равновелик;
б) подобен;
в) равен
исходному?

Решение

Привожу решения Дениса Овчинникова, Владислава Франка и Анатолия Казмерчука.

Обсуждение

Как обычно, к концу соревнования (или очередного этапа, кому как нравится) марафонцы начали потихоньку уставать и сходить с дистанции.
Зато оставшиеся участники порадовали разнообразием подходов.
Например, Влад Франк прибегнул к комплексной параметризации. Аналогичный прием, примененный при решении ММ157 (см. разбор), привел к короткому изящному решению. Удалось ли добиться такого же эффекта для ММ259, судите сами.

Некоторое расхождение в оценках связано со строгостью обоснования последнего пункта.
За одним исключением. У Виктора Филимоненкова все обосновано строго. Но он почему-то рассмотрел треугольник с вершинами в центрах вписанной и описанной окружностей и в ортоцентре (а не центориде, как было в условии).
Такой треугольник не может быть не только равен, но и подобен исходному.

Для полноты картины замечу, что треугольник с вершинами в центроиде, инцентре и ортоцентре, так же как и треугольник из условия, может быть равновелик и подобен, но не равен исходному.
В параметризации A(-1;0), B(1;0), C(x;y), где $0 \le x<1, (x+1)^2+y^2 \le 4$, единственному треугольнику с вершинами в центроиде, инцентре и ортоцентре, подобному исходному соответствует С(0.6367873395...; 0.5201582408...).
Наконец, треугольника с вершинами в центроиде, ортоцентре и центре описанной окружности не существует, поскольку эти точки лежат на прямой Эйлера.

Любопытно, что, если в указанной параметризации взять C(0.3246129395..., 0.4677703801...), треугольник с вершинами в ортоцентре и двух точках Аполлония (изодинамических центрах) подобен исходному с коэффициентов подобия довольно близким к 1.

Я полагаю, что никакой треугольник не может быть равен треугольнику с вершинами в каких-то трех своих замечательных точках. Но пока проверил не все сочетания замечательных точек из ETC (а там порядка 40000 центров) по три :-)

Награды

За решение задачи ММ259 участники Марафона получают следующие призовые баллы:
Анатолий Казмерчук - 9;
Владислав Франк - 8;
Денис Овчинников - 8;
Константин Шамсутдинов - 7;
Виктор Филимоненков - 5.

Эстетическая оценка задачи - 4.8 балла


Вложения:
Комментарий к файлу: Решение Анатолия Казмерчука
Kazmerchuk_mm_259.pdf [1.16 Мб]
Скачиваний: 351
Комментарий к файлу: Решение Дениса Овчинникова
MM259_dendr81.pdf [226.24 Кб]
Скачиваний: 346
Комментарий к файлу: Решение Влада Франка
frank_mm259.pdf [210.75 Кб]
Скачиваний: 365
 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение01.11.2020, 16:20 


06/01/09
231
VAL в сообщении #1490274 писал(а):
Аналогичный прием, примененный при решении ММ257 (см. разбор), привел к короткому изящному решению.


В студию решение этой графской задачи с помощью комплексной геометрии!!!

(вероятно имелось в виду какое-то другое число, не 257)

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение01.11.2020, 16:38 
Заслуженный участник


20/12/10
9107
VAL в сообщении #1490274 писал(а):
Удалось ли добиться такого же эффекта для ММ259, судите сами.
Вполне. Очень удачная параметризация. Правда, я бы дальше рассуждал совсем примитивно: подсчитаем квадраты длин сторон для исходного треугольника и затем для другого треугольника; напишем $6=3!$ систем полиномиальных уравнений и с помощью пакета Groebner из Maple аккуратно докажем, что ни одна из этих систем не имеет решений с $|a|=|b|=1$. Возня с результантами хуже, поскольку могут появляться лишние корни, и с ними надо разбираться отдельно.

Upd. Имелся в виду п. в) задачи.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение01.11.2020, 16:46 
Заслуженный участник


27/06/08
4063
Волгоград
vlad239 в сообщении #1490282 писал(а):
VAL в сообщении #1490274 писал(а):
Аналогичный прием, примененный при решении ММ257 (см. разбор), привел к короткому изящному решению.


В студию решение этой графской задачи с помощью комплексной геометрии!!!

(вероятно имелось в виду какое-то другое число, не 257)
Конечно, 157. Поправил.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение01.11.2020, 16:49 
Аватара пользователя


08/12/11
110
СПб
VAL в сообщении #1490274 писал(а):
Я полагаю, что никакой треугольник не может быть равен треугольнику с вершинами в каких-то трех своих замечательных точках. Но пока проверил все сочетания замечательных точек из ETC (а там порядка 40000 центров) по три :-)
40000 центров? И Вы проверили все их сочетания по три? Для всех видов треугольников? Не понимаю даже, как возможно написать 40000 формул. Это подвиг!

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение01.11.2020, 17:08 
Заслуженный участник


27/06/08
4063
Волгоград
Masik в сообщении #1490290 писал(а):
VAL в сообщении #1490274 писал(а):
Я полагаю, что никакой треугольник не может быть равен треугольнику с вершинами в каких-то трех своих замечательных точках. Но пока проверил все сочетания замечательных точек из ETC (а там порядка 40000 центров) по три :-)
40000 центров? И Вы проверили все их сочетания по три? Для всех видов треугольников? Не понимаю даже, как возможно написать 40000 формул. Это подвиг!
И этот подвиг поправил.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение05.11.2020, 17:22 


06/01/09
231
nnosipov в сообщении #1490285 писал(а):
Правда, я бы дальше рассуждал совсем примитивно: подсчитаем квадраты длин сторон для исходного треугольника и затем для другого треугольника; напишем $6=3!$ систем полиномиальных уравнений и с помощью пакета Groebner из Maple аккуратно докажем, что ни одна из этих систем не имеет решений с $|a|=|b|=1$.


Дело в том, что я стараюсь минимизировать помощь матпакетов и программизма в своих решениях. И, допустим, посчитать результант размера 6*6 я в принципе готов вручную, а вот крутить вручную шесть базисов Гребнера - не хотел бы.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение15.11.2020, 16:26 
Заслуженный участник


27/06/08
4063
Волгоград
===========ММ260===============

Задача ММ260 обобщает и развивает ММ231

ММ260 (12 баллов)

Пусть $ABC$ – некоторый треугольник, точки $K, L, M$ лежат соответственно на прямых $AB, BC$ и $AC$, а $s$ – некоторое действительное число, отличное от 0 и 1. Треугольник $KLM$ будем называть подобно-вписанным в треугольник $ABC$, если:
$AK=sAB, BL=sBC, CM=sCA$;
треугольник $KLM$ подобен треугольнику $ABC$.
Сколько подобно вписанных треугольников может быть у произвольного треугольника?

Решение

Привожу решения Дениса Овчинникова, Анатолия Казмерчука и авторское.

Обсуждение

ММ260 - плод присущего ведущему духу противоречия. Это ответ на реакцию ряда марафонцев на ММ231, не усмотревших у этой задачи интересных обобщений.
Судя по тому, что ММ260 конкурсантам понравилась, "месть" удалась.

Некоторые затруднения, возникшие у участников, оказались связаны с исследованием частного случая, когда исходный треугольник равнобедренный, но не равносторонний.
Все марафонцы заметили, что количество подобно-вписанных треугольников для таких треугольников меньше, чем для разносторонних, не все правильно выяснили на сколько меньше.

В то же время, никто не прошел мимо класса автомедианных (см. авторское решение) треугольников. Я столкнулся с этим классом треугольников именно при решении данной задачи. То, что они называются автомедианными я узнал позже, от А. Д. Блинкова (хотя сразу обнаружил, что эти треугольники подобны треугольникам из своих медиан).
Кроме того, мне сразу бросилась в глаза масса замечательных свойств этих треугольников. Часть этих свойств приведена в авторском решении. Позже мы с Ярославом Сысосевым обнаружили еще море свойств (большинство из которых оказались нигде ранее не описаны).
Возможно, они пригодятся для новых марафонских задач. Поэтому я не буду приводить их здесь.

Награды

За решение задачи ММ260 участники Марафона получают следующие призовые баллы:
Анатолий Казмерчук - 13;
Денис Овчинников - 13;
Константин Шамсутдинов - 12;
Владислав Франк - 12;
Виктор Филимоненков - 11.

Эстетическая оценка задачи - 5 баллов

PS: В условие ММ260 на dxdy вкралась загадочная ошибка! (Загадочная, поскольку на других площадках, где публикуются условия, ее не было. Хотя условия просто копировались.)
Второе условие в определении подобно-вписанных треугольников на здешнем форуме выглядело: $AK=sAB, BL=sBC, CM=sAC$. Вместо правильного $AK=sAB, BL=sBC, CM=sCA$.
При такой интерпретации у равнобедренных треугольников действительно будет больше одного подобно-вписанного вписанного (проходит пример, приведенный ниже Владом Франком). Поэтому я вернул Владу ранее изъятые баллы. В то же время, я не стал возвращать балл Виктору, поскольку его упущение не связано с опечаткой в условии (если я опять чего-то не прозевал).


Вложения:
Комментарий к файлу: Авторское решение
MM260_VAL.pdf [417.84 Кб]
Скачиваний: 345
Комментарий к файлу: Решение Анатолия Казмерчука
Kazmerchuk_mm_260.pdf [823.42 Кб]
Скачиваний: 343
Комментарий к файлу: Решение Дениса Овчинникова
MM260_dendr81.pdf [154.94 Кб]
Скачиваний: 342
 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение15.11.2020, 19:07 
Заслуженный участник


27/06/08
4063
Волгоград
Завершен XXVI конкурс в рамках Математического марафона.

Уверенную победу одержал Анатолий Казмерчук.

Виват победителю и его достойным конкурентам!

Итоговое положение участников в XXVI конкурса в рамках Математического марафона
\begin{tabular}{|l|l|r|r|r|r|r|r|r|r|r|r|r|} \hline №& Участники& 251 & 252 & 253 & 254 & 255 & 256 & 257 & 258 & 259 & 260 & \Sigma \\ 
\hline & \textit{Номинал задачи} & \textit{3} & \textit{4} & \textit{5} & \textit{6} & \textit{7} & \textit{8} & \textit{9} & \textit{7} & \textit{8} & \textit{12} & \textit{69} \\
\hline 1.& Анатолий Казмерчук  & 4 & 5 & 6 & 7 & 8 & 10 & 10 & 8 & 9 & 13 & 80  \\ 
\hline 2.& Владислав Франк & 3 & 4 & 5 & 7 & 8 & 8 & 9 & 8  & 8 & 12 & 72 \\
\hline 3.& Константин Шамсутдинов & 3 & 4 & 5 & 6 & 10 & 8 & 9 & 7 & 7 & 12 & 71 \\ 
\hline 4.& Денис Овчинников & - & 5 & 5 & 5 & 8 & 8 & 9 & 7 & 8 & 13 & 69 \\
\hline 5.& Виктор Филимоненков & 3 & 4 & 4 & 6 & 7 & 8 & 9 & 7 & 5 & 11 & 64 \\ 
\hline 6.& Олег Полубасов & 3 & 5 & 4 & 7 & 9 & 8 & 8 & 8 & - & - & 52 \\ 
\hline 7.& Валентин Пивоваров  & 1 & 1 & 5 & 4 & - & - & - & - & - & - & 11 \\ 
\hline 8.& Василий Дзюбенко & - & 4 & 5 & - & - & 5 & - & - & - & - & 9 \\
\hline 9.& Анна Букина & 1 & - & - & - & - & - & - & 7 & - & - & 8 \\
\hline 9.& vpb & - & - & - & - & - & 8 & - & - & - & - & 8 \\ 
\hline 11.& Владимир Дорофеев & 3 & - & - & - & 4 & - & - & - & - & - & 7 \\
\hline \end{tabular}

Еще четверо участников сошли с дистанции после первой задачи.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение15.11.2020, 21:23 


06/01/09
231
Я все-таки чего-то не понимаю.

Вот у Вас написано

У равнобедренного, но не равностороннего треугольника всего один подобно-вписанный –срединный.

Давайте возьмем равнобедренный прямоугольный треугольник с вершинами (0,0), (1,1),(2,0) и разместим у него на сторонах точки (2/3,2/3),(4/3,2/3),(2/3,0). Получим равнобедренный прямоугольный треугольник с катетом 2/3, разве нет?

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение15.11.2020, 21:59 
Заслуженный участник


27/06/08
4063
Волгоград
vlad239 в сообщении #1492529 писал(а):

Вот у Вас написано

У равнобедренного, но не равностороннего треугольника всего один подобно-вписанный –срединный.
Совершенно верно.
Цитата:

Давайте возьмем равнобедренный прямоугольный треугольник с вершинами (0,0), (1,1),(2,0) и разместим у него на сторонах точки (2/3,2/3),(4/3,2/3),(2/3,0). Получим равнобедренный прямоугольный треугольник с катетом 2/3, разве нет?
Да, равнобедренный, да, прямоугольный. Но не подобно-вписанный.
Там для двух делящих точек $s=\frac23$, а для одной $s=\frac13$.

Написал вышеизложенное и понял, что сейчас придется опять баллы Вам добавлять.
Таки аукнулась моя загадочная опечатка в условии. Загадочная, потому что попала лишь в одно из трех мест, где дублирую условия конкурсных задач.
Процитирую фрагмент своего письма Анатолию Казмерчуку:
Цитата:
[..] условия марафонских задач публикуются в трех местах. Оказалось, что на dxdy CM=sAС, а остальных двух местах правильное
CM=sCA. Что странно, учитывая, что условия просто копируются.
[..]
Сейчас править на dxdy не буду. Поздновато. А при обсуждении прокомментирую.

Собирался, но забыл :facepalm:

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение16.11.2020, 06:19 
Заслуженный участник


18/01/15
3237
Отмечу, что условие задачи ММ260 было двусмысленным. Что, увы, помешало мне её решать. В самом деле, во-первых, в условии написано "лежат на прямых". Не указано, что эти точки лежат на сторонах, т.е. на отрезках $AB$, $BC$, $AC$. В решении же самого автора написано "лежат на сторонах". Во-вторых, как понимать запись $AK=sAB$ ? Я лично понял так, что это равенство для длин отрезков, т.е. $|AK|=s|AB|$ (где $|XY|$ обозначает длину отрезка $XY$, привет учебнику Колмогорова.). При таком расширенном (а на самом деле буквальном) понимании условия бывают и другие подобно вписанные треугольники, когда, скажем, две точки лежат внутри соответствующих сторон, а одна вовне. И возникает столько разных случаев, что решить потребовало бы слишком много времени. А ежели имелось в виду равенство для ориентированных отрезков, так можно было вверху значок вектора нарисовать (или горизонтальную черту, в крайнем случае).

-- 16.11.2020, 05:38 --

(На самом деле, конечно, оно не было двусмысленным, просто я его понял буквально, а автор имел в виду нечто другое).

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение16.11.2020, 06:51 
Заслуженный участник


27/06/08
4063
Волгоград
vpb в сообщении #1492575 писал(а):
Отмечу, что условие задачи ММ260 было двусмысленным. Что, в частности, помешало мне её решать.
Соглашусь и возражу одновременно.
Согласен, что нужно формулировать аккуратнее. Это мой (и не только) бич.
А возражение заключается в том, что уточняющий вопрос - вполне в традициях Марафона.
Цитата:
В самом деле, во-первых, в условии написано "лежат на прямых".
Да, именно это и имелось в виду.
Цитата:
Не указано, что эти точки лежат на сторонах, т.е. на отрезках $AB$, $BC$, $AC$. В решении же самого автора написано "лежат на сторонах". Во-вторых, как понимать запись $AK=sAB$ ? Я лично понял так, что это равенство для длин отрезков, т.е. $|AK|=s|AB|$ (где $|XY|$ обозначает длину отрезка $XY$, привет учебнику Колмогорова.). При таком расширенном (а на самом деле буквальном) понимании условия бывают и другие подобно вписанные треугольники, когда, скажем, две точки лежат внутри соответствующих сторон, а одна вовне. И возникает столько разных случаев, что решить потребовало бы слишком много времени.
Да, про стороны написано, как минимум, неаккуратно. Но в той же фразе есть отсылка к тому, что коэффициент $s$ может быть любым действительным числом, отличным от 0 и 1, из которой ясно, что равенства типа $AK=sAB$, следует понимать, как равенства направленных отрезков. Повторюсь, согласен, что об этом следовало написать явно.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение16.11.2020, 07:17 
Заслуженный участник


18/01/15
3237
VAL в сообщении #1492579 писал(а):
из которой ясно, что

Гм. Практика показала, что это ясно не было. А я вроде в нашем городке не самый непонятливый. Бог с ним.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение16.11.2020, 08:30 
Заслуженный участник


18/01/15
3237
vpb в сообщении #1492581 писал(а):
ясно не было. А я вроде в нашем городке не самый непонятливый.
Сейчас что-то засомневался в себе, примерно как старушка в стихе:
С.Маршак писал(а):
Старушка присела, сама не своя,
И тихо промолвила: "Значит, не я!".
Просмотрел штук десять книжек насчет обозначений. В общем, единственное место, где есть что-то похожее --- это в книжке Ефимова (Краткий курс аналитической геометрии) величина направленного отрезка на прямой с направлением обозначается просто парой букв. Везде в остальных местах $AB$ --- это или сам отрезок $AB$, или, в школьных учебниках, его длина. В общем, я --- это я. Наверное, постоянные участники к используемым обозначениям уже привыкли, поэтому и поняли. А я вот нет.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 861 ]  На страницу Пред.  1 ... 49, 50, 51, 52, 53, 54, 55 ... 58  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group