Координаты вектора в аффинном пространстве над полем чисел целесообразно указывать не в виде чисел, а в виде разности чисел, то есть в виде разности соответствующих координат точек его начала и конца в выбранной системе координат.
Тогда сразу же видно его положение в этой системе координат, то есть, где его начало и где конец.
В трехмерном действительном аффинном пространстве возьмем две точки:
и
.
Вектор
имеет координаты
, которые целесообразно оставить в таком виде, вместо того, чтобы произвести вычитание и указать координаты в виде
, где
, поскольку, если координаты указаны в виде
, необходимо найти для них соответствующую систему координат, и это в общем случае будет уже другая система координат (с центром в точке
и с прежним векторным базисом).
В этой новой системе координат вектор
будет радиус-вектором.
Правильно?