2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:07 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Ну, то, что подход был правильный, уже хорошо. :-)
Сверимся. Какие у Вас получились частные производные $\frac{\partial \rho}{\partial x}$ и $\frac{\partial \varphi}{\partial x}$ ?

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:15 


17/03/20
183
svv
$g_{xx}=\frac{x^{2}}{x^{2}+y^{2} }+ \frac{y^{2}\rho^{2}}{(x^{2}+y^{2})^{2}}$

-- 08.09.2020, 01:16 --

svv
Ой, я уже с возведением в квадрат написал

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:18 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Совершенно верно, теперь учтите, что $x^2+y^2=\rho^2$.

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:24 


17/03/20
183
svv
$g_{xx}=\frac{x^{2}}{\rho^{2}}+\frac{y^{2}}{\rho^2}$

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:25 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
$...=\frac{x^2+y^2}{\rho^2}$
А что будет, если ещё раз учесть, что $x^2+y^2=\rho^2$ ?

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:26 


17/03/20
183
svv
1

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:27 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
А как Вы думаете, какое получится $g_{yy}$, если так же аккуратно всё посчитать?

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:29 


17/03/20
183
svv
Так же. Я то обсчитался, но все же...

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:32 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Да.
Но ведь по-другому и получиться не могло. Потому что метрический тензор в стандартной декартовой системе координат (где базисные векторы единичны и взаимно перпендикулярны)
$(g_{ik})=\operatorname{diag}(1,1,1)$
независимо от способа получения. Он характеризует только декартову систему, а не переход из цилиндрической (или другой) системы в декартову.

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:36 


17/03/20
183
svv
Ну а если все же, тензор характеризует косоугольные декартовы координаты, в цилиндрических его не запишешь

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:41 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
В цилиндрических он всё равно будет иметь тот вид, который я приводил выше. Только в этом случае изменятся формулы преобразования координат.

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 01:46 


17/03/20
183
svv
Можете пояснить, пожалуйста, как они будут записаны в этом случае? А то сейчас не понимаю, ну как пример, насколько они будут отличаться?

Но не прямо сейчас...

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 02:00 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Пусть $(x,y)$ — декартовы прямоугольные координаты на плоскости (с единичным метрическим тензором), $(\xi, \eta)$ — косоугольные. Пусть
$x=\xi$
$y=\xi+\eta$
Тогда, обратно,
$\xi=x$
$\eta=y-x$

1) В формулы
$\rho=\sqrt{x^2+y^2}, \;\varphi=\arctg\frac y x$
вместо $x$ и $y$ подставьте их выражения через $\xi$ и $\eta$.

2) В формулы
$\xi=x,\; \eta=y-x$
вместо $x$ и $y$ подставьте их выражения через $\rho$ и $\varphi$.

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 02:02 


17/03/20
183
svv
Хорошо, ещё раз доброй ночи!

 Профиль  
                  
 
 Re: Тензор перехода в кинематической паре
Сообщение08.09.2020, 20:42 


17/03/20
183
svv
Добрый вечер, уважаемый svv! Я прошу Вас простить мне мои глупые предположения! У меня возник вопрос, уточнение требуется, вот смотрите, в случае, если еще ось z имеется, я могу просто ее тогда обозначить дополнительной буквой, и вот хотел спросить, по сути перевод из прямоугольной в косоугольную систему, можно ли рассматривать как линейное преобразование над x,y,z, ну например полилинейная интерполяция? Или нет? Т.е именно как связь кос угольной с прямоугольной в пространстве...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 55 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group