2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Симметрии системы с идеальными связями
Сообщение27.07.2020, 18:05 
Аватара пользователя


31/08/17
2116
На гладком трехмерном многообразии $M$ с локальными координатами $x=(x^1,x^2,x^3)$ задана система с лагранжианом
$$L=L(x,\dot x),\quad \det\frac{\partial ^2L}{\partial \dot x^2}\ne 0$$
и идеальными связями
$$\omega^r=\omega^r_i(x)dx^i,\quad \omega^r_i(x)\dot x^i=0,\quad r=1,2,\quad\mathrm{rang}\,\omega^r_i=2.$$
Кроме того, имеется группа симметрий $g^s:M\to M$ сгенерированная векторным полем $v(x)\ne 0$,
$$L(x,\dot x)=L\Big(g^s(x),\frac{\partial g^s(x)}{\partial x}\dot x\Big),\quad \forall s,\qquad \omega^r_iv^i=0,\quad L_v\omega^r=0.$$
$L_v$ -- производная Ли.

Доказать, что соответствующая система уравнений Лагранжа со множителями интегрируется в квадратурах.

 Профиль  
                  
 
 Re: Симметрии системы с идеальными связями
Сообщение01.08.2020, 02:36 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Выберем произвольную точку $x_0\in M$. Воспользуемся Вашей любимой теоремой о выпрямлении векторного поля. Имея $v(x)\neq 0$, можно в некоторой окрестности $x_0$ построить систему координат, в которой $v$ имеет вид $(1,0,0)$.

Чтобы не вводить новые обозначения, будем считать, что $(x^1,x^2,x^3)$ уже является такой системой координат, где $v_1=1, v_2=v_3=0$.
Из $\omega^r_i v^i=0$ получаем, что $\omega_1^1=0$ и $\omega_1^2=0$.
Теперь из $\omega^r_i\;\dot x^i=0$ с учётом $\mathrm{rang}\,\omega^r_i=2$ получаем $\dot x^2=\dot x^3=0$, то есть $x^2=\operatorname{const}$ и $x^3=\operatorname{const}$ вдоль траектории.

Из $L(x,\dot x)=L(g^s(x),g^s_*(\dot x))$ получаем, что система имеет первый интеграл
$I=\dfrac{\partial L}{\partial \dot q^i}v^i=\dfrac{\partial L}{\partial \dot q^1}$,
т.е. вдоль траектории сохраняется компонента $p_1$ обобщённого импульса.

 Профиль  
                  
 
 Re: Симметрии системы с идеальными связями
Сообщение01.08.2020, 08:44 
Аватара пользователя


31/08/17
2116
Здорово! И равенство нулю производной Ли оказалось лишним. А там еще интеграл энергии есть. Очень много лишних условий я наставил выходит. Надо другую формулировку придумать.

 Профиль  
                  
 
 Re: Симметрии системы с идеальными связями
Сообщение01.08.2020, 12:12 
Заслуженный участник


17/09/10
2158
svv в сообщении #1476776 писал(а):
можно в некоторой окрестности $x_0$ построить систему координат, в которой $v$ имеет вид $(1,0,0)$

Только надо квадратурами эту систему координат вычислить.
Хотя, если кроме поля $v$ ещё и $g_s$ известны, то вопросов нет.

 Профиль  
                  
 
 Re: Симметрии системы с идеальными связями
Сообщение01.08.2020, 12:57 
Аватара пользователя


31/08/17
2116
Задачка растет из такого сорта наблюдений https://dxdy.ru/post1476748.html#p1476748
естественно

 Профиль  
                  
 
 Re: Симметрии системы с идеальными связями
Сообщение01.08.2020, 13:53 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Спасибо! :-)

 Профиль  
                  
 
 Re: Симметрии системы с идеальными связями
Сообщение01.08.2020, 18:29 
Заслуженный участник


17/09/10
2158
И всё же, как проинтегрировать в квадратурах движение системы, если неизвестно $g_s$.
Понятно, что связи здесь интегрируемы (система голономная) и есть нётеровский интеграл и интеграл энергии, и конфигурационные пространства есть траектории поля $v$, и всё это чересчур, как заметил автор задачи.
Но если поле $v$ непроинтегрировано в квадратурах, задача не решена.
Думаю, можно чуть изменить условия задачи, чтобы избежать всех этих неприятностей, связанных с вычислением $g_s$.
Например, пусть $i_v\omega^r=0, L_v(d\omega^r)=\Omega^r\ne{0}$ и $d\Omega^r=0$ (тут появляются 2 первых интеграла для поля $v$) или что-то в в этом роде.
Или предложить другое решение или вообще другую задачу.
Конечно, если $g_s$ известны, то вопросов не возникает.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group