2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Соскальзывание с полушара
Сообщение24.07.2020, 11:44 


26/04/14
121
На вершине гладкого полушара радиуса $R$ покоится небольшое тело. Ему сообщают горизонтальную скорость $\upsilon_0 < \sqrt{gR} $. Записать уравнение $ \upsilon (t)$, описывающее движение тела до отрыва от поверхности полушара.

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 03:02 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Mathew Rogan
Уравнение будет как у перевернутого математического маятника.

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 08:54 
Заслуженный участник


05/02/11
1270
Москва
Если бы рассматривалось начало движения из другой точки, была бы двумерная задача с центральными силами.

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 11:04 
Заслуженный участник
Аватара пользователя


31/01/14
11304
Hogtown
dovlato в сообщении #1475801 писал(а):
Если бы рассматривалось начало движения из другой точки, была бы двумерная задача с центральными силами.
Естественно. Тогда, использовав закон сохранения "углового момента" в этой задаче (который соответствует вертикальной составляющей вектора углового момента в 3хмерной задаче), можно было бы отделить азимутальный угол (долготу) и решить задачу в квадратурах (сначала для широты, а потом и для долготы).

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 11:44 
Аватара пользователя


31/08/17
2116
dovlato в сообщении #1475801 писал(а):
Если бы рассматривалось начало движения из другой точки, была бы двумерная задача с центральными силами.

откуда двумерная и откуда центральные силы
ниче не понял

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 12:48 
Заслуженный участник
Аватара пользователя


15/10/08
12496
Центральность сил при радиальности движения - слабое утешение.

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 12:51 
Заслуженный участник


05/02/11
1270
Москва
Двумерная - в простейшем случае, если, как в этой задаче, считать шар зафиксированным. Останутся только широта да широта. А чо не так?

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 17:46 
Заслуженный участник


05/02/11
1270
Москва
Прошу прощения: широта да долгота; спасибо коллеге за поправку.

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 18:02 
Аватара пользователя


31/08/17
2116
А понял. Ну сферический маятник это такая же стандартная задача как и математический

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 18:48 
Заслуженный участник
Аватара пользователя


15/10/08
12496
Пикантность ситуации заключается в том, что по построению движение одномерное.

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 18:57 
Заслуженный участник
Аватара пользователя


31/01/14
11304
Hogtown
Утундрий в сообщении #1475914 писал(а):
Пикантность ситуации заключается в том, что по построению движение одномерное.
Если в начальный момент точка была на вершине. Но сейчас обсуждается случай, когда она была не на вершине и угловой момент имел ненулевую вертикальную составляющую.

 Профиль  
                  
 
 Re: Соскальзывание с полушара
Сообщение25.07.2020, 21:24 
Заслуженный участник


05/02/11
1270
Москва
Пусть в начальный момент угол между радиус-вектором скользящей точки и вертикальной осью равен $\theta_0$,
вектор скорости $\mathbf V_0$, и в этот момент её модуль меньше скорости отрыва. Тогда угол $\theta$, при котором произойдёт отрыв, определяется уравнением $$3\cos\theta=2\cos\theta_0+\frac{V_0^2}{Rg}$$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Ignatovich


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group