2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 System of equations from an old magazine
Сообщение18.07.2020, 00:52 
Аватара пользователя


13/10/07
755
Роман/София, България
Solve the system:
$1 + (y-z)^2 = 2 x$
$16 + (z-x)^2 = 8 y$
$81 + (x-y)^2 = 18 z$

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 09:53 
Заслуженный участник


20/12/10
9109
Maple says that there are infinitely many solutions (for instance, over $\mathbb{R}$). I propose solve it over $\mathbb{F}_p$ with a prime $p>3$.

Upd. For the number of solutions over $\mathbb{F}_p$, we have a very simple answer. So, this problem can be proposed for student's exam tests. In the form when the coefficient $16$ was replaced by $17$ (due to a teacher's errata, for example) the problem seems to be more surprising but still reasonable.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 10:55 
Заслуженный участник
Аватара пользователя


26/02/14
568
so dna
ins- в сообщении #1474253 писал(а):
Solve the system:
$1 + (y-z)^2 = 2 x$
$16 + (z-x)^2 = 8 y$
$81 + (x-y)^2 = 18 z$

$\begin{cases} 
  -3 + (y-z)^2 - \frac{(z-x)^2}{4} = 2(x-y),&\\
  -5 + \frac{(z-x)^2}{4} - \frac{(x-y)^2}{9} = 2(y-z)
  \end{cases}$
складывая это, получим:

$9(y-z-1)^2=(x-y+9)^2$
отсюда:

$x=13, y=10, z=5$ или
$x=\frac{p^2+1}{2}, y=\frac{p^2+6p+13}{2}, z=\frac{p^2+4p+13}{2}$.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 11:17 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Curiouser and curiouser! A whole parabola of solutions in $\mathbb Z$ alone (that is, as $p$ runs over all odd integers from $-\infty$ to $\infty$).

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 11:40 
Аватара пользователя


13/10/07
755
Роман/София, България
It should not be a hard problem, but it is possible to make a mistake while solving it. That is the reason I think it is suitable for lower rounds of a math olympiad. I found the problem in an old magazine from Sweden (1942) as a statement (there was no solution). I made some attempts to solve it.

From the first equation we have $\frac{1+(y-z)^2}{2}=x$ *)
From the second equation we have $\frac{16+(z-x)^2}{8}=y$ **)
Then from *) - **) we have:
$\frac{1+(y-z)^2}{2}-\frac{16+(z-x)^2}{8}=x-y$
$\frac{1+(y-z)^2}{2}-\frac{16+(z-x)^2}{8}=(x-z)+(z-y)$
$\frac{1+(y-z)^2}{2}-\frac{16+(z-x)^2}{8}=-(z-x)-(y-z)$
$\frac{1+(y-z)^2}{2}+(y-z)=\frac{16+(z-x)^2}{8}-(z-x)$
$\frac{(1+(y-z))^2}{2}=\frac{(4-(z-x))^2}{8}$ ***)

Or we have two cases:
$I. $ $2(1+y-z)=4-z+x$
$II. $ $2(1+y-z)=-4+z-x$

In case $I$ there are two options: $y-z = -5/2$ or $y-z=2$.
When $y-z=-5/2$ I found the following possible solutions $(29/8, 17/8, 37/8)$ and $(29/8, 185/8, 205/8)$ but when tried to put these values in the system's equations it turned out that the second system equation is not an identity, so only $(29/8, 17/8, 37/8)$ is a solution, when $y-z=-5/2$.
When $y-z=2$ I found the following possible solutions $(5/2, 29/2, 25/2)$ and $(5/2, 17/2, 13/2)$, but again the second equation is not an identity for $(5/2, 17/2, 13/2)$, so only $(5/2, 29/2, 25/2)$ is a solution when $y-z=2$.

In case $II$ I found $x=2y-z-2$. When I tried to plug x in the system's equations I had an identity. It made me to think that the system have in this case an infinite number of solutions given by the condition: $x=2y-z-2$. To verify it is correct I tried to put some solutions of $x=2y-z-2$ in the system's equations, but it they weren't an identities.

So I concluded - only the triples $(29/8, 17/8, 37/8)$ and $(5/2, 29/2, 25/2)$ are the solutions of the system.

But ... I put the system in Wolfram Alpha and it gave a very different result: $(13, 4, 9)$, $(13, 10, 5)$, $(13, 34, 29)$ and when $x \ne 13$ there are infinitely many solutions given by: $(x, 6 + x - 3 \sqrt{-1 + 2 x}, 6 + x - 2 \sqrt{-1 + 2 x})$ and $(x, 6 + x + 3 \sqrt{-1 + 2 x}, 6 + x + 2 \sqrt{-1 + 2 x})$.

Probably I made a mistake or it needs more efforts in solving. Still working on it.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 11:47 


21/05/16
4292
Аделаида
ins- в сообщении #1474328 писал(а):
In case $I$ there are two options: $y-z = -5/2$ or $y-z=2$.

Why?

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 11:54 
Аватара пользователя


13/10/07
755
Роман/София, България
kotenok gav в сообщении #1474329 писал(а):
ins- в сообщении #1474328 писал(а):
In case $I$ there are two options: $y-z = -5/2$ or $y-z=2$.

Why?


Because of the following:

I put $y-z=t$ after some transformations using the second and third system's equations there was the following:

$\frac{16+(2t+2)^2}{8}-\frac{81+(t-2)^2}{18}=t$. I solved it and it has two roots $-\frac{5}{2}$ and $2$.

In case it is not clear I can provide more details.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 12:17 
Заслуженный участник
Аватара пользователя


26/02/14
568
so dna
ins- в сообщении #1474328 писал(а):
In case $II$ I found $x=2y-z-2$. When I tried to plug x in the system's equations I had an identity. It made me to think that the system have in this case an infinite number of solutions given by the condition: $x=2y-z-2$. To verify it is correct I tried to put some solutions of $x=2y-z-2$ in the system's equations, but it they weren't an identities.
A typical situation is when "necessity" and "sufficiency" are confused.
ins- в сообщении #1474328 писал(а):
But ... I put the system in Wolfram Alpha and it gave a very different result: $(13, 4, 9)$, $(13, 10, 5)$, $(13, 34, 29)$ and when $x \ne 13$ there are infinitely many solutions given by: $(x, 6 + x - 3 \sqrt{-1 + 2 x}, 6 + x - 2 \sqrt{-1 + 2 x})$ and $(x, 6 + x + 3 \sqrt{-1 + 2 x}, 6 + x + 2 \sqrt{-1 + 2 x})$.
in particular when $x=\frac{p^2+1}{2}$ that's exactly
Rak so dna в сообщении #1474317 писал(а):
$x=13, y=10, z=5$ или
$x=\frac{p^2+1}{2}, y=\frac{p^2+6p+13}{2}, z=\frac{p^2+4p+13}{2}$.
Answers $(13, 4, 9)$, $(13, 34, 29)$ are achieved at $p=\mp5$
Sorry for my English

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 12:40 
Аватара пользователя


13/10/07
755
Роман/София, България
Thank you for these insights!

Rak so dna в сообщении #1474334 писал(а):
Sorry for my English

Your English is far better than my Russian. It is a sad story I haven't used it for many years and write here in English.

The problem allows more approaches to be solved. For example $2a=x+y-z$, $2b=x-y+z$, $2c=-x+y-z$, but I not sure which one is the best.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 12:48 
Заслуженный участник


20/12/10
9109
ins-
How about my idea for solving your system over a finite field (see above)?

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 12:56 
Аватара пользователя


13/10/07
755
Роман/София, България
It is very interesting and in this way can be created many problems. I think many of the good problems are created in the way "what will happens if we change this to that". Somewhere I found a material where was mentioned the famous Russian mathematician Sharygin created some of his problems using exactly that approach.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 13:06 
Заслуженный участник


20/12/10
9109
At least, I constructed (with your help, of course) these two problems for my students which will get it in the nearest exam session :-)

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 13:15 
Аватара пользователя


13/10/07
755
Роман/София, България
:-) I hope they read this forum.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 13:18 
Заслуженный участник


20/12/10
9109
They read, I know.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 13:34 
Аватара пользователя


13/10/07
755
Роман/София, България
You are lucky having such ambitious students.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 23 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group