2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 System of equations from an old magazine
Сообщение18.07.2020, 00:52 
Аватара пользователя


13/10/07
755
Роман/София, България
Solve the system:
$1 + (y-z)^2 = 2 x$
$16 + (z-x)^2 = 8 y$
$81 + (x-y)^2 = 18 z$

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 09:53 
Заслуженный участник


20/12/10
9107
Maple says that there are infinitely many solutions (for instance, over $\mathbb{R}$). I propose solve it over $\mathbb{F}_p$ with a prime $p>3$.

Upd. For the number of solutions over $\mathbb{F}_p$, we have a very simple answer. So, this problem can be proposed for student's exam tests. In the form when the coefficient $16$ was replaced by $17$ (due to a teacher's errata, for example) the problem seems to be more surprising but still reasonable.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 10:55 
Заслуженный участник
Аватара пользователя


26/02/14
568
so dna
ins- в сообщении #1474253 писал(а):
Solve the system:
$1 + (y-z)^2 = 2 x$
$16 + (z-x)^2 = 8 y$
$81 + (x-y)^2 = 18 z$

$\begin{cases} 
  -3 + (y-z)^2 - \frac{(z-x)^2}{4} = 2(x-y),&\\
  -5 + \frac{(z-x)^2}{4} - \frac{(x-y)^2}{9} = 2(y-z)
  \end{cases}$
складывая это, получим:

$9(y-z-1)^2=(x-y+9)^2$
отсюда:

$x=13, y=10, z=5$ или
$x=\frac{p^2+1}{2}, y=\frac{p^2+6p+13}{2}, z=\frac{p^2+4p+13}{2}$.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 11:17 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Curiouser and curiouser! A whole parabola of solutions in $\mathbb Z$ alone (that is, as $p$ runs over all odd integers from $-\infty$ to $\infty$).

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 11:40 
Аватара пользователя


13/10/07
755
Роман/София, България
It should not be a hard problem, but it is possible to make a mistake while solving it. That is the reason I think it is suitable for lower rounds of a math olympiad. I found the problem in an old magazine from Sweden (1942) as a statement (there was no solution). I made some attempts to solve it.

From the first equation we have $\frac{1+(y-z)^2}{2}=x$ *)
From the second equation we have $\frac{16+(z-x)^2}{8}=y$ **)
Then from *) - **) we have:
$\frac{1+(y-z)^2}{2}-\frac{16+(z-x)^2}{8}=x-y$
$\frac{1+(y-z)^2}{2}-\frac{16+(z-x)^2}{8}=(x-z)+(z-y)$
$\frac{1+(y-z)^2}{2}-\frac{16+(z-x)^2}{8}=-(z-x)-(y-z)$
$\frac{1+(y-z)^2}{2}+(y-z)=\frac{16+(z-x)^2}{8}-(z-x)$
$\frac{(1+(y-z))^2}{2}=\frac{(4-(z-x))^2}{8}$ ***)

Or we have two cases:
$I. $ $2(1+y-z)=4-z+x$
$II. $ $2(1+y-z)=-4+z-x$

In case $I$ there are two options: $y-z = -5/2$ or $y-z=2$.
When $y-z=-5/2$ I found the following possible solutions $(29/8, 17/8, 37/8)$ and $(29/8, 185/8, 205/8)$ but when tried to put these values in the system's equations it turned out that the second system equation is not an identity, so only $(29/8, 17/8, 37/8)$ is a solution, when $y-z=-5/2$.
When $y-z=2$ I found the following possible solutions $(5/2, 29/2, 25/2)$ and $(5/2, 17/2, 13/2)$, but again the second equation is not an identity for $(5/2, 17/2, 13/2)$, so only $(5/2, 29/2, 25/2)$ is a solution when $y-z=2$.

In case $II$ I found $x=2y-z-2$. When I tried to plug x in the system's equations I had an identity. It made me to think that the system have in this case an infinite number of solutions given by the condition: $x=2y-z-2$. To verify it is correct I tried to put some solutions of $x=2y-z-2$ in the system's equations, but it they weren't an identities.

So I concluded - only the triples $(29/8, 17/8, 37/8)$ and $(5/2, 29/2, 25/2)$ are the solutions of the system.

But ... I put the system in Wolfram Alpha and it gave a very different result: $(13, 4, 9)$, $(13, 10, 5)$, $(13, 34, 29)$ and when $x \ne 13$ there are infinitely many solutions given by: $(x, 6 + x - 3 \sqrt{-1 + 2 x}, 6 + x - 2 \sqrt{-1 + 2 x})$ and $(x, 6 + x + 3 \sqrt{-1 + 2 x}, 6 + x + 2 \sqrt{-1 + 2 x})$.

Probably I made a mistake or it needs more efforts in solving. Still working on it.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 11:47 


21/05/16
4292
Аделаида
ins- в сообщении #1474328 писал(а):
In case $I$ there are two options: $y-z = -5/2$ or $y-z=2$.

Why?

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 11:54 
Аватара пользователя


13/10/07
755
Роман/София, България
kotenok gav в сообщении #1474329 писал(а):
ins- в сообщении #1474328 писал(а):
In case $I$ there are two options: $y-z = -5/2$ or $y-z=2$.

Why?


Because of the following:

I put $y-z=t$ after some transformations using the second and third system's equations there was the following:

$\frac{16+(2t+2)^2}{8}-\frac{81+(t-2)^2}{18}=t$. I solved it and it has two roots $-\frac{5}{2}$ and $2$.

In case it is not clear I can provide more details.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 12:17 
Заслуженный участник
Аватара пользователя


26/02/14
568
so dna
ins- в сообщении #1474328 писал(а):
In case $II$ I found $x=2y-z-2$. When I tried to plug x in the system's equations I had an identity. It made me to think that the system have in this case an infinite number of solutions given by the condition: $x=2y-z-2$. To verify it is correct I tried to put some solutions of $x=2y-z-2$ in the system's equations, but it they weren't an identities.
A typical situation is when "necessity" and "sufficiency" are confused.
ins- в сообщении #1474328 писал(а):
But ... I put the system in Wolfram Alpha and it gave a very different result: $(13, 4, 9)$, $(13, 10, 5)$, $(13, 34, 29)$ and when $x \ne 13$ there are infinitely many solutions given by: $(x, 6 + x - 3 \sqrt{-1 + 2 x}, 6 + x - 2 \sqrt{-1 + 2 x})$ and $(x, 6 + x + 3 \sqrt{-1 + 2 x}, 6 + x + 2 \sqrt{-1 + 2 x})$.
in particular when $x=\frac{p^2+1}{2}$ that's exactly
Rak so dna в сообщении #1474317 писал(а):
$x=13, y=10, z=5$ или
$x=\frac{p^2+1}{2}, y=\frac{p^2+6p+13}{2}, z=\frac{p^2+4p+13}{2}$.
Answers $(13, 4, 9)$, $(13, 34, 29)$ are achieved at $p=\mp5$
Sorry for my English

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 12:40 
Аватара пользователя


13/10/07
755
Роман/София, България
Thank you for these insights!

Rak so dna в сообщении #1474334 писал(а):
Sorry for my English

Your English is far better than my Russian. It is a sad story I haven't used it for many years and write here in English.

The problem allows more approaches to be solved. For example $2a=x+y-z$, $2b=x-y+z$, $2c=-x+y-z$, but I not sure which one is the best.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 12:48 
Заслуженный участник


20/12/10
9107
ins-
How about my idea for solving your system over a finite field (see above)?

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 12:56 
Аватара пользователя


13/10/07
755
Роман/София, България
It is very interesting and in this way can be created many problems. I think many of the good problems are created in the way "what will happens if we change this to that". Somewhere I found a material where was mentioned the famous Russian mathematician Sharygin created some of his problems using exactly that approach.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 13:06 
Заслуженный участник


20/12/10
9107
At least, I constructed (with your help, of course) these two problems for my students which will get it in the nearest exam session :-)

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 13:15 
Аватара пользователя


13/10/07
755
Роман/София, България
:-) I hope they read this forum.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 13:18 
Заслуженный участник


20/12/10
9107
They read, I know.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 13:34 
Аватара пользователя


13/10/07
755
Роман/София, България
You are lucky having such ambitious students.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 23 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group