А деление в таком случае?
Ну тут вы уж сами, как раз попытки решения будут. Вот пример:
на каждом шагу показывает остаток.
означает, что в столбик вы типа "делите" число 53, хотя на самом деле
.
Поищите ещё метод вычисления квадратного корня в столбик. Вот с этим можно будет как раз на форуме и поразвлечься...
Простите...Но, можно ли ещё чуть-более подробно разъяснить про деление? Просто возникают трудности, особенно, когда деление касается десятичных дробей
А трудности-то вот в чём: Допустим, что мы хотим разделить одно число на другое. Тогда, мы можем разложить делимое на сумму чисел, каждое из которых максимально кратно делителю.
Допустим, мы хотим поделить 123 на 4. Тогда, 123 можно разложить на сумму 120 и 3 (то есть на числа, максимально кратные делителю). Следовательно, у нас получится 30 и 3 в остатке. Остаток можно также поделить на 4, представив в виде дроби
.
Но вот незадача: при делении десятичных дробей помимо целой части, наличествует и дробная. Я подумал, что можно представить деление десятичной дроби на число или другую десятичную дробь в виде уравнения.
Итак, допустим мы хотим разделить 126,4 на 3,2. Результат равен некоему x. Тогда, домножив обе части уравнения на 10 в степени, равной наибольшему количеству цифр после запятой у десятичной дроби нашего уравнения (количество цифр после запятой может быть равно у обоих дробей), мы тем самым избавимся от десятичных дробей в нашем уравнении и результат деления придётся поделить на 10 в соответствующей степени (чтобы узнать наконец, чему же равен наш x).
Но правомерно ли это? И вообще, относится ли это хоть как-нибудь к методу деления столбиком?