2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 11:30 
Аватара пользователя


07/01/15
1243
Рассматривается система обобщенных интегральных уравнений Абеля
$$
\begin{cases}
\int_0^t \frac{ \alpha(\tau) }{ (\tau-t)^{1/2} }\,d\tau - \int_t^T \frac{ \beta(\tau) }{ (\tau-t)^{1/3} } = \Phi_0(t),\\
\alpha(t) + \int_t^T \frac{ \beta(\tau) }{ (\tau-t)^{2/3} }\,d\tau + \Phi_1(t) = 0 
\end{cases}
$$
с неизвестными $\alpha(t)$ и $\beta(t)$. Здесь $\Phi_0(t), \Phi_1(t)$ можно считать сколь угодно хорошими, в зависимости от потребностей.

Система возникла в ходе решения математической модельной задачи. Но не возникала ли такая система чудом у кого-нибудь на работе/производстве? Регуляризовать её по-обычному не получится: если привести к её системе уравнений с интегралами типа Коши (см. Мусхелишвили Н.И. "Сингулярные интегральные уравнения", 1968), то характеристическая часть получится вырожденной.

Я прошелся по библиографиям, искал информацию об интегральных уравнениях такого типа, которые удовлетворяют двум критериям:
а) чтобы в уравнениях встречались операторы разных степеней $-$ в данном случае присутствуют операторы степени $1/2, 1/3$ и $2/3.$
б) чтобы уравнения содержали как интегралы $\int_0^t,$ так и $\int_t^T -$ то есть, по разным отрезкам. Преобразовать их один в другой при разных показателях не так-то просто. И даже если преобразовать, то вырожденность не улетучивается.

По просмотренным мной источникам присутствует информация, удовлетворяющая только одному из приведенных критериев. Я не нашел сведений о тех уравнениях, которые удовлетворяют сразу двум.
Да, я изначально хотел вопрос в ПРР поместить, но в такой форме он получился довольно общим. Так что поместил тут.

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 12:45 
Заблокирован


16/04/18

1129
Попробовать альфа из второго подставить в первое? Вычислить потом композицию дробных интегралов?
Хорошая общая ссылка: Abel Integral Equations: Analysis and Applications.
Rudolf Gorenflo, Sergio Vessella (auth.)
Series: Lecture Notes in Mathematics 1461
Publisher: Springer-Verlag Berlin Heidelberg, Year: 1991

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 13:24 
Аватара пользователя


07/01/15
1243
novichok2018, смотрел. И по разделу 6.А "Generalized Abel Equations: Survey of Literature" прошелся, но там все те же одинаковые показатели
Цитата:
...Remember the form
$Mu(x) = \phi(x)(J_a^\alpha u)(x)+\psi(x)(K_b^\alpha u)(x) = f(x),\quad a \le x \le b$, of the generalized Abel equation.

При этом они процитироватили работы Lowengtub-Walton, 1979 и Walton, 1979, и сказали, что они посвящены системам вида
$$
\begin{align}
\phi_1(x)\int_a^x \frac{ u(t)dt}{ (x^\delta - t^\delta)^\alpha } + \psi_1(x)\int_x^b\frac{ v(t) dt}{ (x^\delta-t^\delta)} = f_1(x), (a \le x \le b), \\
\phi_2(x)\int_a^x \frac{ u(t)dt}{ (x^\delta - t^\delta)^\alpha } + \psi_2(x)\int_x^b\frac{ v(t) dt}{ (x^\delta-t^\delta)} = f_1(x), (a \le x \le b).
\end{align}
$$
Подразумевается $\delta = 1$ или $\delta = 2.$
Это немного лукавство. Первая работа действительно посвящена таким системам. Но во второй статье
Walton J.R. - Systems of generalized Abel integral equations with applications to simultaneous dual relations, 1979. (Я даже ссылку оставлю для тех, у кого совесть не фатально-сильна) разбирается система
$$
\begin{align}
a_1(x^p)\int_0^x \frac{ \alpha_1(t^p)\phi_1(t)dt}{ (x^p - t^p)^{ \mu_1 } } + b_2(x^p)\int_x^1\frac{ \beta_2(t^p)\phi_2(t) dt}{ (t^p-x^p)^{\mu_2} } = f_1(x), \\
b_1(x^p)\int_x^1 \frac{ \beta_1(t^p)\phi_1(t)dt}{ (t^p - x^p)^{ \mu_1 } } + a_2(x^p)\int_0^x\frac{ \alpha_2(t^p)\phi_2(t) dt}{ (x^p-t^p)^{ \mu_2} } = f_2(x), \\
0 < x < 1,
\end{align}
$$
что чуть интереснее $-$ система удовлетворяет обоим критериям выше, хотя это и весьма частный случай. И статья написана очень сжато, так что разбираться по нему я буду (а я буду) долго, и адаптировать его прием к моей системе $-$ это надо что-то наворотить, чтобы получилось.

Мне бы сейчас достаточно какую-нибудь общую теорему существования $-$ и я был бы на седьмом небе этого было бы достаточно для моих настоящих целей. Хотя и подозреваю, что не родился еще математик, который доказал бы такую теорему хотя бы для случая постоянных коэффициентов (ну кроме аспирантки из Самарского университета, труды которой я нашел в сети и которая строит матрице-значные операторы Абеля $-$ но она, по-видимому, охватила своей теорией только случай с равными показателями).

-- 16.06.2020, 14:26 --

novichok2018 в сообщении #1469048 писал(а):
Попробовать альфа из второго подставить в первое? Вычислить потом композицию дробных интегралов?

Выразить одни и подставить-то завсегда можно и проверить, что там да как. Но... у меня такие уравнения и более высокого порядка имеются, а трудоемкость такого подхода будет расти очень быстро с порядком системы.

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 13:52 
Заблокирован


16/04/18

1129
Подстановка - по крайней мере это решите. Для бета получится одно уравнение с разносторонними дробными интегралами, в книге Самко, Килбас, Маричев есть специальный параграф про такие уравнения. А там можно и с более высоким порядком побороться по той же схеме.
Самарская аспирантка чья ученица (=кого цитирует), Огородникова или Андреева скорее всего?, можно их поспрашивать.

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 13:58 
Аватара пользователя


07/01/15
1243
Вот пока подставляю, думаю: на какую работу тратятся математические силы наций? Ладно математические модельки, столько важных производственных уравнений не исследовано! Брусья изгибать, крутить $-$ уже интегральные уравнения с сингулярностями, потоки гидродинамические банальные, спутные, в знакопеременной вязкости $-$ системы интегро-дифф. уравнений с кучей особенностей и вырождены. И многие из них до сих пор толком не исследованы! Вот бы на важные с точки зрения производства/приложений задачи навести умных людей, которые занимаются топосами и гомологиями, столько пользы бы вышло! Я по мере моих скромных возможностей буду пытаться убеждать грантодателей-фондов, NSF разных сделать финансовый "крен" в пользу дифурщиков и других хозяйственников: исследователей трещин, плазм, лазеров, обратных задач, полупроводников... Вот тогда умные люди с других областей потянутся; занимался мотивами? Перестали платить гранты? Вот тебе и мотив! Ай-да к нам, в тяж. пром., дифуры решать!

novichok2018 в сообщении #1469051 писал(а):
Самарская аспирантка чья ученица (=кого цитирует), Огородникова или Андреева скорее всего?, можно их поспрашивать.

Да, Андреева ученица.

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 14:15 
Заблокирован


16/04/18

1129
Как её фамилия? Саша уже давно занимается скорее олимпиадами, чем наукой.

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 14:23 
Заслуженный участник
Аватара пользователя


03/06/08
2360
МО
SomePupil в сообщении #1469053 писал(а):
убеждать грантодателей-фондов, NSF разных сделать финансовый "крен" в пользу дифурщиков и других хозяйственников: исследователей трещин, плазм, лазеров, обратных задач, полупроводников... Вот тогда умные люди с других областей потянутся; занимался мотивами? Перестали платить гранты? Вот тебе и мотив! Ай-да к нам, в тяж. пром., дифуры решать!

Так если это надо вашему тяжпрому, почему бы ему и не оплачивать эти исследования? У NSF есть свой научный совет, он, полагаю, и определяет приоритеты.

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 15:14 
Аватара пользователя


07/01/15
1243
пианист в сообщении #1469059 писал(а):
Так если это надо вашему тяжпрому, почему бы ему и не оплачивать эти исследования?

В конечном счете тяж. пром оплачивает всё. Но характер исследований определяют не люди из тяж. пром., насколько я знаю, а как раз науч. советы. Тут есть и определенная инертность со стороны пром., и играет роль то, что они попросту не знают возможностей науки. Достаточно квалифицированный дифурщик может оценить, как провести исследования, чтобы вышло с пользой для хозяйства. И надо сказать, очень квалифицированный: зачастую соответствующий мат. аппарат толком не разработан даже. Другое дело, какое влияние этот условный дифурщик имеет в советах.

пианист в сообщении #1469059 писал(а):
У NSF есть свой научный совет, он, полагаю, и определяет приоритеты.

И финансируется военными, которые неразборчивы: дают деньги практически на все. То есть, не контролируют направления исследований. Артем Оганов в "Эхе Москвы" рассказывал, что они дали деньги даже на проект "брони из льда". В математике и подавно: что академики сочтут интересными, и запишут в списке на финансирование, то они и подписывают, не глядя.

P.S. Меня поражает сам факт наличия большого количества насущных проблем, еще не решенных. Хотя умные кадры есть в наличии, и ого какие. Да даже на нашем институте алгебраисты сплошь толковые ребята. Вот бы эти кадры да как следует направить, эти гиганты быстро бы все вспахали и переполошили.

-- 16.06.2020, 16:15 --

novichok2018 в сообщении #1469055 писал(а):
Как её фамилия? Саша уже давно занимается скорее олимпиадами, чем наукой.

Вот, нашел в истории браузера.

Исмагилова Р.Р. - Решение полного матричного аналога обобщенного уравнения Абеля с постоянными коэффициентами, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. №1(22). С. 93-98. 2011.

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 16:51 
Заслуженный участник


22/11/10
1184
SomePupil в сообщении #1469049 писал(а):
Хотя и подозреваю, что не родился еще математик, который доказал бы такую теорему хотя бы для случая постоянных коэффициентов

Ну уж, прямо проблема Гильберта ...
Сначала замена
$$
\gamma(t) = \int \limits_t^T \frac{\beta(\tau)}{(\tau - t)^{2/3}} \, d \tau.
$$
Тогда
$$
B_0 \int \limits_t^T \frac{\beta(\tau)}{(\tau - t)^{1/3}} \, d \tau = \int \limits_t^T \frac{\gamma(\tau)}{(\tau - t)^{2/3}} \, d \tau, \quad B_0 = B(1/3,1/3).
$$
Отсюда
$$
B_0 \int \limits_0^t \frac{\gamma(\tau)}{(t - \tau)^{1/2}} \, d \tau + \int \limits_t^T \frac{\gamma(\tau)}{(\tau - t)^{2/3}} \, d \tau = F_3(t).
$$
Слева операторы дробного интегрирования (с разными началами). А это положительные операторы. Так что КАК МИНИМУМ единственность гладкого решения имеется. Сопряженный оператор того же вида. Так что и разрешимость должна быть для гладкой правой части. Правда, может какое-то поведение потребуется. Не удивлюсь, если там все в порядке без всяких условий (кроме гладкости). Можно попробовать метод последовательных приближений.

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 17:18 
Аватара пользователя


07/01/15
1243
sup, в абстрактном подходе я ничего не смыслю, увы, но это интересно.
sup в сообщении #1469080 писал(а):
Можно попробовать метод последовательных приближений.

На $H_{x, t}^{p, p/3}$ в данном случае это сработает? Как именно должна сопряженность помочь? Попробую копнуть в эту сторону. В любом случае, спасибо за наводки.

Если что, $H_{x, t}^{p, p/3}$ здесь в смысле
Krylov N.V. Lectures on Elliptic and parabolic equations in Holder spaces, 1996.

-- 16.06.2020, 18:48 --

(Оффтоп)

Это вы ведь контрпример к истории с Отелбаевым придумали?

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 17:48 
Заслуженный участник


22/11/10
1184

(Оффтоп)

я еще и крестиком умею вышивать (С)

SomePupil в сообщении #1469085 писал(а):
На $H_{x, t}^{p, p/3}$ в данном случае это сработает?

Я не совсем понял, у Вас же одна переменная. Или это просто модель и Вам нужно что-то "многомерное"? Если так, то Вам стоит все-же написать ту задачу, которая действительно нужна.

Насчет сопряженного оператора. Типичный случай (со всякими-всякими оговорками): если у сопряженного уравнения есть единственность гладкого решения, то исходное разрешимо для плотного множества правых частей. Если есть оценка - есть и разрешимость для любой правой части. Это некий ориентир, идеальная цель.
Но в данном случае можно попробовать подход с регуляризацией.
Сначала сводим все (как я указывал) к тому "странному" интегральному уравнению (я уж воспользуюсь более привычной переменной $y(t)$)
$$
Jy(t) = F_3(t).
$$
А затем рассмотрим краевую задачу
$$
\begin{align}
-&\varepsilon y'' + \varepsilon y + Jy = F_3, \\
&y(0) = y(1) = 0.
\end{align}
$$
Разрешимость этой задачи доказывается элементарно, коль скоро есть оценка умножением на $y(t)$. Ну, а затем переходим к пределу. А вот какому классу принадлежит решение, это надо разбираться.

 Профиль  
                  
 
 Re: Система уравнений Абеля с разными показателями
Сообщение16.06.2020, 21:52 
Заблокирован


16/04/18

1129
Серьёзные силы включились, автору вопроса повезло. Уравнения подобные последнему у sup есть в 6 главе Самко Килбас Маричев, только к сожалению там рассматривается случай одинаковых порядков.
Можно попробовать такой путь, чтобы найти решение. По формулам в СКМ можно второй дробный интеграл выразить через такой же, но в пределах как первый [0,t]. Потом интеграл порядка 2/3 представить как композицию интегралов порядков 1/6 и опять же 1/2, интеграл порядка 1/2 можно обозначать буквой и похоже получится уравнения Абеля.
Может быть ещё проще к первому уравнению применить дробный интеграл порядка 1/6 в пределах [t,T]. Тогда интегралы по бета подравняются, если два уравнения теперь сложить, то они сократятся и останется уравнение только с альфой.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Divergence


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group