DeBillСпасибо, что заглянули в тему.
Тоже складывалось, что-то подобное про рассмотрении "впуклостей":
1. Если разрезали на две равные части ломаной, то внутри есть как минимум один угол (

).
2. Этот угол будет выпуклым для одной части (

), но "впуклым" для другой (

). Индексы указывают к какой части принадлежит точка.
3. На границе исходного многоугольника никаких впуклых углов нет, значит при совмещении частей, точка

должна совместиться с некой точкой

, которая также лежит на ломанной.
... тут дыра.
4. И вроде как из всего этого должно следовать, что единственный вариант совместить части - это если разрез совмещается сам с собой.
5. Есть ровно два варианта
а) концы ломаной совмещаются сами с собой, тогда разрез зеркально симметричен, осью симметрии является прямая, соединяющая концы ломаной, что невозможно.
б) концы ломаной совмещаются "крест-на-крест", тогда разрез совмещается сам с собой поворотом на 180 градусов, а значит он центрально симметричен. Причем центром симметрии является точка на середине отрезка, соединяющая концы ломаной.
5. При этом полностью совмещаются части периметра исходного многоугольника. А значит и сам многоугольник центрально симметричен.
6. А раз так, то его можно разрезать на две одинаковые части любой прямой, проходящей через центр симметрии.
7. Если многоугольник не центрально симметричен, разрезать ломаной его нельзя.