2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 ТЭИ сплошной среды и плотность лагранжиана.
Сообщение16.05.2020, 14:05 


28/08/13
548
Во 2 томе Ландау и Лифшица из физических соображений построен этот тензор в системе отсчёта, в которой элемент среды(жидкости) покоится (35.1). В произвольной СО формула (35.2) $$T^{ik}=(p+\varepsilon)u^iu^k-pg^{ik}$$ получается угадыванием. Я плохо умею такие вещи - угадывать общие формулы по частному случаю. А как получить плотность лагранжиана жидкости, чтобы из неё законно вывести ТЭИ в общем случае? Я начал писать было $L=\varepsilon + \varepsilon v^2/2c^2,$ где v - скорость "расплывания" жидкости в данной точке, но не понимаю, как от $v^2$ перейти к давлению. Да и давление, что входит в (35.2), это же внутренняя характеристика движения материи, её энергия, вроде как, получается учтена в слагаемом $\varepsilon $?

 Профиль  
                  
 
 Re: ТЭИ сплошной среды и плотность лагранжиана.
Сообщение16.05.2020, 15:30 
Заслуженный участник
Аватара пользователя


04/09/14
5372
ФТИ им. Иоффе СПб
Ascold в сообщении #1463166 писал(а):
законно вывести ТЭИ
Гляньте ЛЛ 6 (Гидродинамика) параграфы 6 и 7. Должно помочь.

 Профиль  
                  
 
 Re: ТЭИ сплошной среды и плотность лагранжиана.
Сообщение16.05.2020, 15:33 
Заслуженный участник
Аватара пользователя


15/10/08
12861
Ascold в сообщении #1463166 писал(а):
получается угадыванием. Я плохо умею такие вещи - угадывать общие формулы по частному случаю.
На самом деле использованный ЛЛ способ не является каким-то ущербным "частным случаем", а даёт корректное определение тензорного поля на всём многообразии. Если у нас выбраны координаты и заданы все компоненты тензора, то их всегда можно пересчитать к любым другим координатам. Суть же метода состоит в том, чтобы перебрать все тензорные выражения, дающие в избранных координатах требуемые компоненты. Этот перебор редко бывает сложен.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group