2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Бесконечный спуск для кубов методами Ферма?
Сообщение08.04.2020, 15:11 


19/04/14
321
Бесконечный спуск для кубов методами Ферма?
$$f^3=(a+b-c)^3=3(c-a)(c-b)(a+b)$$
уменьшим каждое число тройки решения $(a,b,c)$ на такое $(d)$, что $(a+b-2d)$ будет кубом.
А разности же $(c-a),(c-b)$ при таком уменьшении не меняются.
Следовательно, если ВТФ не верна, то существует $f_1^3<f^3$, а значит существует и новая тройка решения меньшая минимальной. Чем это не бесконечный спуск для кубов методами Ферма?

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение08.04.2020, 15:22 
Заслуженный участник


20/12/10
9107
binki в сообщении #1452765 писал(а):
уменьшим каждое число тройки решения $(a,b,c)$ на такое $(d)$, что $(a+b-2d)$ будет кубом.
А разности же $(c-a),(c-b)$ при таком уменьшении не меняются.
Да, но равенство испортится.

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение08.04.2020, 17:57 


19/04/14
321
nnosipov в сообщении #1452774 писал(а):
Да, но равенство испортится.

Уважаемый nnosipov
Конечно, $f^3$ представляет произведение трех кубов натуральных чисел при предположении существовании решения в натуральных числах уравнения Ферма. Куб $f_1^3$ также равен произведению трех кубов. Не следует ли из этого, что и в этом случае должно быть справедливо равенство: $(a-d)^3+(b-d)^3-(c-d)^3=0$

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение08.04.2020, 18:53 
Заслуженный участник


20/12/10
9107
binki
Там в правой части равенства мне увиделось $a-b$, а на самом деле там $a+b$. Так что да, про равенство я теперь ничего не утверждаю. Но в любом случае тот текст, что там есть, вряд ли может быть доказательством для случая кубов --- уж больно он короткий, без подробностей, так не бывает. В таком несерьезном стиле доказательства не пишутся.

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение08.04.2020, 19:23 


13/05/16
362
Москва
Утундрий в сообщении #1452860 писал(а):
Кроме того, мне казалось, что были и другие доказательства, помимо доказательства Эйлера.

Действительно, для кубов было опубликовано доказательство на этом форуме

-- 08.04.2020, 19:47 --

binki в сообщении #1452765 писал(а):
Бесконечный спуск для кубов методами Ферма?
$$f^3=(a+b-c)^3=3(c-a)(c-b)(a+b)$$
уменьшим каждое число тройки решения $(a,b,c)$ на такое $(d)$, что $(a+b-2d)$ будет кубом.

Возьмите уравнение $x^3+y^3=9z^3$ и проделайте те же манипуляции. Вы получите, что оно не имеет решений в натуральных числах, что неверно

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение08.04.2020, 20:20 


19/04/14
321
Antoshka в сообщении #1452861 писал(а):
Возьмите уравнение $x^3+y^3=9z^3$

А где здесь уравнение Ферма? И где разложение в произведение трёх кубов?

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение08.04.2020, 21:08 


13/05/16
362
Москва
binki в сообщении #1452888 писал(а):
А где здесь уравнение Ферма? И где разложение в произведение трёх кубов?

Делаем так же, как вы. Уменьшим $x,y,z$ на $d\in\mathbb{N}$. Тогда имеем $(x-d)^3+(y-d)^3=9(z-d)^3$. Существует меньшая тройка чисел $(x-d,y-d,z-d)$, удовлетворяющая уравнению $x^3+y^3=9z^3$$\Rightarrow$ имеем бесконечный спуск$\Rightarrow$ имеем противоречие, то есть уравнение не имеет решений в натуральных числах. Тем не менее $(1,2,1)$ удовлетворяет данному уравнению. Чем моё рассуждение отличается от вашего?

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение08.04.2020, 22:36 


19/04/14
321
Antoshka в сообщении #1452896 писал(а):
Чем моё рассуждение отличается от вашего?

Бесконечный спуск существует тогда, когда новая тройка решения сохраняет свойства предыдущей. Здесь, и $f^3$ и $f_1^3$ равны известным в ВТФ произведениям трех кубов. В вашем же случае просто уменьшаются числа решения. Что неизбежно, через определенное кол-во шагов приведет к нулевым решениям. У вас нет бесконечного спуска.
В вашем равенстве нет третьего куба, поэтому не может существовать упомянутое произведение трех кубов.

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение08.04.2020, 22:58 
Заслуженный участник


04/05/09
4589
binki в сообщении #1452837 писал(а):
Конечно, $f^3$ представляет произведение трех кубов натуральных чисел при предположении существовании решения в натуральных числах уравнения Ферма.
Я, может, что-то пропустил. Почему, собственно?

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 07:48 


19/04/14
321
nnosipov в сообщении #1452849 писал(а):
в любом случае тот текст, что там есть, вряд ли может быть доказательством для случая кубов --- уж больно он короткий, без подробностей, так не бывает. В таком несерьезном стиле доказательства не пишутся.

Уважаемый nnosipov
Да, не рассматривалось несколько моментов необходимых для полной ясности док-ва. Текст короткий, чтобы показать суть применения бесконечного спуска для кубов. Например: делимость одного из чисел тройки решения на три не влияет на существование бесконечного спуска и т. д. Конечно, эти вопросы должны возникнуть в процессе дискуссии, и придётся отвечать.

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 08:05 


08/12/13
252
Думаю, что существование элементарного и небольшого по размеру, на пару листов школьной тетради, сведения ВТФ для нечётных степеней к гипотезе о бесконечности простых чисел Ферма смогло бы удовлетворить вообще всех, в том числе Эндрю Уайлса и Пьера Ферма.

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 08:06 
Заслуженный участник


20/12/10
9107
binki в сообщении #1453000 писал(а):
Конечно, эти вопросы должны возникнуть в процессе дискуссии
На меня не рассчитывайте, я уже давно (содержательно) не комментирую сообщения в этом разделе форума.

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 08:15 


19/04/14
321
venco в сообщении #1452934 писал(а):
Я, может, что-то пропустил. Почему, собственно?

Уважаемый venco
Если возвести в куб $f^3=(a+b-c)^3$, то в сумме слагаемых появится выражение $a^3+b^3-c^3$, которое при натуральных числах $(a,b,c)$ будет равно нулю, только в случае предположения, что ВТФ не верна. Сумма остальных слагаемых преобразуется в выражение $f^3=(a+b-c)^3=3(c-a)(c-b)(a+b)$. Числа $(a,b,c)$ взаимно простые и пусть $(c-a) $ делится на три, тогда выражения $3(c-a), (c-b), (a+b)$ также взаимно простые, значит кубы.
Кроме того, это же видно и из разложения суммы и разностей кубов при предположении, что ВТФ не верна.

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 11:49 


13/05/16
362
Москва
binki в сообщении #1452922 писал(а):
Бесконечный спуск существует тогда, когда новая тройка решения сохраняет свойства предыдущей

Попробую воспроизвести ваши рассуждения подробно. Итак, имеем уравнение $x^3+y^3=z^3$. Требуется доказать, что оно не имеет решений в натуральных попарно взаимно простых числах. Предположим обратное, то есть что существует тройка $x=a,y=b,z=c$, удовлетворяющая уравнению. Исходное уравнение равносильно такому $(x+y-z)^3=3(x+y)(z-x)(z-y)$, то есть в терминах $a,b,c$ имеем $(a+b-c)^3=3(a+b)(c-a)(c-b)$. Вспомним формулы Абеля. Получается, что в правой части стоит произведение трёх кубов. Ясно, что одно из чисел $a,b,c$ делится на три. Пусть это будет $c$. Тогда $a+b=9A^3,c-a=m^3,c-b=w^3$, то есть действительно справа произведение трёх кубов. Далее, насколько я понимаю, вы делаете постановку $x=a-d,y=b-d,z=c-d$, причём $x+y=a+b-2d=9h^3,h\in\mathbb{N}$, то есть $d=(a+b-9h^3)/2 $. Вы выбираете $d$таким образом, чтобы справа получить произведение трёх кубов. И действительно, в правой части будет $(3h)^3w^3m^3$,а слева $(a+b-c-d)^3$. Далее возможны три ситуации.
1)$(a+b-c-d)^3=(3h)^3w^3m^3$, что вы и рассматриваете методом бесконечного спуска
2)$(a+b-c-d)^3<(3h)^3w^3m^3$
3)$(a+b-c-d)^3>(3h)^3w^3m^3$
Случаи 2 и 3 и нужно рассмотреть

 Профиль  
                  
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 12:55 


19/04/14
321
Antoshka в сообщении #1453037 писал(а):
Далее возможны три ситуации.
1)$(a+b-c-d)^3=(3h)^3w^3m^3$, что вы и рассматриваете методом бесконечного спуска
2)$(a+b-c-d)^3<(3h)^3w^3m^3$
3)$(a+b-c-d)^3>(3h)^3w^3m^3$
Случаи 2 и 3 и нужно рассмотреть

Если в правых частях 2 и 3 появляется выражение $a_1^3+b_1^3-c_1^3\ne0$. то невозможно осуществить разложения разностей и суммы кубов с образованием кубов $(c_1-a_1), (c_1-b_1)$ и $3(a_1+b_1)$. Здесь $(a_1,b_1,c_1)$ новая тройка решения УФ.
Следовательно, случаи 2 и 3 не существуют.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 26 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group