2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Элементарные функции
Сообщение11.12.2019, 16:16 
Заслуженный участник


13/12/05
4520
mihaild
Нет, $e^{-1/x^2}$ не элементарная функция на $\mathbb R$ (это вообще не функция на $\mathbb R$). Это элементарная функция на своей области определения (а также на любом промежутке, целиком лежащим в области определения).

 Профиль  
                  
 
 Re: Элементарные функции
Сообщение11.12.2019, 20:31 


14/01/11
2919
Padawan в сообщении #1429710 писал(а):
Sender
Запишите Вашим способом функцию, например
Sender в сообщении #1429703 писал(а):
$f(x)=\begin{cases} 1,x<0\\ \ch x, x \geqslant 0\end{cases}$

Линейная добавка оказалась не самой удачной, сделал так:

$f(x)=(1/2)(\ch x+1+|\ch x-1 +x \ch x|-|x \ch x|).$

 Профиль  
                  
 
 Re: Элементарные функции
Сообщение11.12.2019, 22:26 


14/11/08
73
Москва
Для простоты пусть $a,b\in \mathbb R$ (если $a$ или $b$ бесконечны, потребуются незначительные модификации).
1. Заметим, что для всех $p<q\in \mathbb R$ функция $$\theta_{pq}(x)=\begin{cases}p, x<p\\ x, p\le x\le q\\ q, x\ge q\end{cases}$$ элементарна.
Доказательство. $\theta_{pq}(x)=\varphi_p(\psi_q(x))$, где $\varphi_p(x)=\dfrac{|x-p|+x+p}{2}$, $\psi_q(x)=\dfrac{x+q-|x-q|}{2}$.
2. Пусть $c$ есть внутренняя точка $\langle a, b\rangle$, функция $f$ элементарна на $\langle a, c]$, функция $g$ элементарна на $[c,b\rangle$, функции $f$ и $g$ определены в точке $c$, и, при этом, $f(c)=g(c)$ . Тогда функция $$h(x)=f(\theta_{ac}(x))+g(\theta_{cb}(x))-f(c)$$ элементарна на $\langle a,b\rangle$, определена во всех точках $x\in \langle a, c]$, в которых определена функция $f$ и во всех точках $x\in [c, b\rangle$, в которых определена функция $g$, а также удовлетворяет условию $$h(x)=\begin{cases}f(x), x\in \langle a, c)\\g(x), x\in [c, b\rangle\end{cases}$$
3. Индукция.

Замечание. Как легко заметить, требование непрерывности "агрегированной" функции можно существенно ослабить.
____
А, и формула выписывается.

 Профиль  
                  
 
 Re: Элементарные функции
Сообщение12.12.2019, 06:41 
Заслуженный участник


13/12/05
4520
Nik_Nikols
Да, я это и задумывал.
Nik_Nikols в сообщении #1429778 писал(а):
Замечание. Как легко заметить, требование непрерывности "агрегированной" функции можно существенно ослабить.

Поясните, пожалуйста, что Вы имеете ввиду.

 Профиль  
                  
 
 Re: Элементарные функции
Сообщение12.12.2019, 18:43 


14/11/08
73
Москва
Ну, непрерывность функции $f$ (это которая на $\langle a, b\rangle$) в Ваших условиях нужна только для совпадения значений функций на границах отрезков. Правда, в остальных точках она следует из определенности (раз функции элементарны). Однако задачка остается вполне содержательной, если мы этой определенности не требуем (поскольку мы изначально думаем об элементарных функциях как о функциях, которые определены не всюду). Например, вполне разумно задаться вопросом, элементарна ли функция
$$
f(x)=\begin{cases}\dfrac{1}{x}, x\le 1,\\ x, x> 1\end{cases}
$$
(не определена в нуле).

Я бы дал такое определение: функция $f:X\to \mathbb R$, $X\subseteq \mathbb R$, элементарна на множестве $Y$, если существует элементарная функция $g$ (с "естественной" областью определения), для которой (a) $Y\cap Z=Y\cap \mathrm{dom}\,g$, (b) $f(x)=g(x)$ для всех $x\in Y\cap Z$.

Тогда имеем следующее утверждение (для простоты формулирую для отрезков). Для всех $a_0<a_1<\ldots<a_n\in \mathbb R $ и функций $f_0, f_1, \ldots, f_{n-1}$, таких что
(a) для каждого $i$, $0\le i\le n-1$, функция $f_i$ элементарна на $[a_i, a_{i+1}]$
(b) для каждого $i$, $0\le i\le n-2$, функции $f_i$ и $f_{i+1}$ определены в точке $a_{i+1}$ и их значения в этой точке совпадают,
функция
$$
h(x)=\begin{cases}f_0(x), a_0\le x\le a_1,\\ f_1(x), a_1< x\le a_2,\\ \ldots\\ f_{n-1}(x), a_{n-1}< x\le a_n\end{cases}
$$
элементарна на $[a_0, a_n]$.

Кстати, утверждение усиливается дальше, поскольку (b) можно заменить на

(b') для каждого $i$, $0\le i\le n-2$, функции $f_i$ и $f_{i+1}$ либо обе не определены в точке $a_{i+1}$, либо обе определены в точке $a_{i+1}$, и их значения в этой точке совпадают.

Понятно, что в точках обоюдной неопределенности их надо "сшивать" по-другому (проще).

Например, функция
$$
f(x)=\begin{cases}\dfrac{1}{x}, x<0,\\ \ln(x), x> 0\end{cases}
$$
(не определена в нуле) элементарна.

 Профиль  
                  
 
 Re: Элементарные функции
Сообщение12.12.2019, 21:12 


14/11/08
73
Москва
Nik_Nikols в сообщении #1429891 писал(а):
Я бы дал такое определение: функция $f:X\to \mathbb R$, $X\subseteq \mathbb R$, элементарна на множестве $Y$, если существует элементарная функция $g$ (с "естественной" областью определения), для которой (a) $Y\cap Z=Y\cap \mathrm{dom}\,g$, (b) $f(x)=g(x)$ для всех $x\in Y\cap Z$.



Опечатка: $X$ вместо $Z$, конечно.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 21 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group