2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9  След.
 
 Re: Направление силы трения
Сообщение16.08.2019, 15:05 
Аватара пользователя


11/12/16
14255
уездный город Н
amon

(Формулировки теоремы о кинетической энергии)

amon в сообщении #1410727 писал(а):
"Пусть связи, наложенные на систему, идеальны и на траектории движения действительные перемещения принадлежат пространству виртуальных. Тогда скорость изменения кинетической энергии системы равна суммарной мощности всех заданных сил, приложенных к точкам системы (как внутренних, так и внешних)".


Правильно ли понимаю, что данная формулировка
а) ограничивает действие теоремы системами с идеальными нереономными связями.
б) в формулировке теоремы подразумеваются (учитываются) только активные силы, то есть силы не зависящие от связей
?

Теперь рассмотрим ранее приведенную формулировку:

Цитата:
Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы

Насколько понимаю, эта формулировка
а) не делает никаких предположений о характере связей, имеющихся в системе
б) учитывает все силы: не только внутренние и внешние, но и активные и пассивные.

В связи с чем вопрос:
Есть ли (с учетом выше сказанного) какие-то нестрогости или некорректности во второй формулировке?

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 15:09 
Заслуженный участник


20/08/14
11913
Россия, Москва
druggist в сообщении #1410718 писал(а):
Dmitriy40 в сообщении #1410712 писал(а):
Если усилие на валу колеса пытается его разгонять (увеличивать угловую скорость колеса) - разгоняет, если пытается тормозить (уменьшать угловую скорость) - тормозит.
Так вопрос был, если не пытается ни разогнать ни тормозить, усилия на валу нет вообще, то как такое колесо остановится?
Трение качения.
Кстати там есть и картинки с направлением силы трения и её образованием. Т.е. ответ на вопрос темы.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 15:19 
Заслуженный участник
Аватара пользователя


30/01/06
72407
EUgeneUS в сообщении #1410689 писал(а):
Перед тем как рассматривать воздухомешалку в салоне имеет смысл рассмотреть аэродинамическое торможение.

Нет, не имеет. Автомобиль в вакууме.

EUgeneUS в сообщении #1410689 писал(а):
Но поднятый вопрос показывает, что граница, так сказать, по масштабу, тоже может быть важна.

Угу. Если придумать чушь, как вы, а потом упорно её отстаивать.

Мне больше нравится кинетическая энергия центра масс.

EUgeneUS в сообщении #1410689 писал(а):
Мне не сложно повторить

Повторить-то не сложно, вот если бы вам её ещё понять...

Вот внутри автомобиля есть цилиндр с газом. В него вдвигают поршень, объём цилиндра уменьшается. Силы давления газа на стенки цилиндра, включая поршень, внутренние? Внутренние. Работу совершают? Совершают. Значит, они увеличивают "кинетическую энергию" - по сути, тепловую энергию движения молекул газа.

-- 16.08.2019 15:29:02 --

Dmitriy40 в сообщении #1410735 писал(а):
Трение качения.
Кстати там есть и картинки с направлением силы трения и её образованием.

Зря вы этого демона упомянули :-)

Допустим, колесо абсолютно жёсткое, а дорога не абсолютно жёсткая (мягкая, покрыта ковром или чем-то ещё). Тогда момент всех сил относительно центра колеса равен нулю. Что же тормозит качение?

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 15:45 
Аватара пользователя


11/12/16
14255
уездный город Н
Munin в сообщении #1410737 писал(а):
Нет, не имеет. Автомобиль в вакууме.

Как тебе такое Илон Маск? :mrgreen:

(Оффтоп)

Munin в сообщении #1410737 писал(а):
Угу. Если придумать чушь, как вы, а потом упорно её отстаивать.

Munin в сообщении #1410737 писал(а):
Повторить-то не сложно, вот если бы вам её ещё понять...

Я запомнил.


Munin в сообщении #1410737 писал(а):
Вот внутри автомобиля есть цилиндр с газом. В него вдвигают поршень, объём цилиндра уменьшается. Силы давления газа на стенки цилиндра, включая поршень, внутренние? Внутренние. Работу совершают? Совершают. Значит, они увеличивают "кинетическую энергию" - по сути, тепловую энергию движения молекул газа.


Это один из вариантов рассмотрения системы.
Другой вариант:
1. Силы давления газа совершают работу ($A_1$) над поршнем
2. Поршень совершает работу ($A_2$) над газом.
3. Так как перемещение одно и тоже, а силы равны и противоположны, то $A_1 = -A_2$. Суммарная работа ноль, кинетическая энергия не изменилась.

И кто мне запретит такое рассмотрение? Чем газ в поршне принципиально отличается от пружинки?

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 15:59 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Хм. Действительно. Но тогда зачем вообще настаивать на включении внутренних сил в формулировку? При таком рассмотрении пара таких сил всегда будет совершать нулевую работу.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 16:29 
Аватара пользователя


11/12/16
14255
уездный город Н
Munin

Во-1-х.
Munin в сообщении #1410756 писал(а):
При таком рассмотрении пара таких сил всегда будет совершать нулевую работу.

Не всегда. Пример: сила трения при наличии проскальзывания. Тогда силы равны по модулю и противоположны по направлению, но перемещения разные и работы сил не равны по модулю.

Во-2-х.
Все таки, где-то собака порылась в формулировке теоремы "из википедии".
Пример: упрём невесомую пружинку в стену и начнем сжимать.
Система - пружинка. СО стены.
Работа внешних сил - не ноль. Внутренние силы "уравновешены" (суммарная работа любой пары сил - ноль).
Кинетическая энергия системы как была ноль, так и осталась.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 17:16 
Заслуженный участник
Аватара пользователя


30/01/06
72407
EUgeneUS в сообщении #1410764 писал(а):
Не всегда.

Всегда.

EUgeneUS в сообщении #1410764 писал(а):
Пример: сила трения при наличии проскальзывания. Тогда силы равны по модулю и противоположны по направлению, но перемещения разные и работы сил не равны по модулю.

Вот про это я и спрашивал. И мы с amon остановились на том, что следует рассматривать перемещение материальной точки, а оно для всех сил одинаково.

EUgeneUS в сообщении #1410764 писал(а):
Все таки, где-то собака порылась в формулировке теоремы "из википедии".

Почему я с самого начала подозрительно к ней и относился.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 17:21 
Заслуженный участник
Аватара пользователя


04/09/14
5332
ФТИ им. Иоффе СПб
EUgeneUS в сообщении #1410733 писал(а):
Правильно ли понимаю
IMHO, правильно. Как я понимаю, засада в том, что сила реакции зависит от траектории, и если силы реакции совершают еще и работу, то дело совсем дрянь. Реакция связи это не заранее заданная сила, а то, что надо получить в процессе решения (еще одно неизвестное), и если связь достаточно хреновая (в ней присутствует, к примеру, какая-то диссипация), то IMHO, задача может вообще не решаться средствами теор.меха.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 17:24 
Аватара пользователя


11/12/16
14255
уездный город Н
Munin в сообщении #1410771 писал(а):
следует рассматривать перемещение материальной точки, а оно для всех сил одинаково.


Одна сила - одна материальная точка, одно перемещение.
Пара сил - пара материальных точек (к которым они приложены) и пара перемещений.
И если для пары сил мы имеем 3-й закон Ньютона, то ничто не запрещает двум разным материальным точкам иметь разные перемещения.
Что и происходит в приведенном мной примере.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 17:25 
Заслуженный участник
Аватара пользователя


04/09/14
5332
ФТИ им. Иоффе СПб
Munin в сообщении #1410756 писал(а):
Но тогда зачем вообще настаивать на включении внутренних сил в формулировку?
Система частиц, бегающих по поверхности сферы, отталкиваясь друг от друга. К ним приложена внешняя сила. Силы между частицами внутренние, но их надо учитывать.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 17:29 
Заслуженный участник
Аватара пользователя


30/01/06
72407
EUgeneUS в сообщении #1410776 писал(а):
Одна сила - одна материальная точка, одно перемещение.
Пара сил - пара материальных точек (к которым они приложены) и пара перемещений.

То есть, для двух взаимодействующих точек энергия может браться из ниоткуда и исчезать в никуда? Класс.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 17:33 
Заслуженный участник
Аватара пользователя


04/09/14
5332
ФТИ им. Иоффе СПб
Munin в сообщении #1410780 писал(а):
То есть, для двух взаимодействующих точек энергия может браться из ниоткуда и исчезать в никуда? Класс.
Если силы потенциальны, то обсуждаемая теорема - это просто закон сохранения энергии и боле - ничего.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 17:54 
Аватара пользователя


11/12/16
14255
уездный город Н
amon в сообщении #1410782 писал(а):
Если силы потенциальны, то обсуждаемая теорема - это просто закон сохранения энергии и боле - ничего.


Даже если непотенциальны, то вспоминаем, что ЗСЭ - это не только про кинетическую энергию. Тут никаких проблем (ИМХО) нет.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 18:04 
Заслуженный участник
Аватара пользователя


30/01/06
72407
amon в сообщении #1410782 писал(а):
Если силы потенциальны

Угу, а если нет?

EUgeneUS в сообщении #1410784 писал(а):
Даже если непотенциальны, то вспоминаем, что ЗСЭ - это не только про кинетическую энергию.

И вот тут-то вы и вляпываетесь в свои проблемы с формулировкой. В частности, то, что вы процитировали, - оно только про кинетическую. Почему-то.

 Профиль  
                  
 
 Re: Направление силы трения
Сообщение16.08.2019, 18:07 
Аватара пользователя


11/12/16
14255
уездный город Н
amon в сообщении #1410775 писал(а):
IMHO, правильно.


Как показал контрпример с пружинкой, формулировка теоремы "из википедии" не совсем корректная.

Кстати, пример с цилиндром, газом и поршнем, приведенный Munin, на самом деле - туда же.
Сумма работ внутренних сил там ноль. Но есть еще внешняя сила, которая толкает поршень, и её работа не ноль - полная аналогия с пружинкой.

Если рассмотреть формулировку из Болотина, то условие идеальности связей легко обходится: если связь не идеальная (работа сил реакции не ноль), то мы просто не считаем эту связь связью и рассматриваем внутренние силы. Болотин и Ко, кстати, об условности (произволе) определения связей пишет несколько выше.

Видимо, ключевое условие: "на траектории движения действительные перемещения принадлежат пространству виртуальных", что (насколько понимаю, могу ошибаться) связано с требованием нереономности связей.

На данный момент у меня остается вопрос: как сформулировать более корректно условие теоремы "из википедии".
То есть
а) как наложить дополнительные условия, чтобы утверждение "Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы" было верным.
б) при этом эти условия не должны выражаться в терминах связей (так как исходная формулировка не требует введения этого понятия).

-- 16.08.2019, 18:08 --

Munin в сообщении #1410786 писал(а):
И вот тут-то вы и вляпываетесь в свои проблемы с формулировкой. В частности, то, что вы процитировали, - оно только про кинетическую. Почему-то.


Если я куда-то и вляпался (подозреваю, что да), то не туда.
Теорема о кинетической энергии не требует её сохранения. Это не ЗСЭ.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 128 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group