В теории моделей логики первого порядка есть интерпретация как логических связок (таблицы истинности выбраны в качестве их интерпретации), так и символов функций и символов отношений (предикатов). В универсальной алгебре же ничего об интерпретации связок не говорится, то есть интерпретация связки объектного языка есть просто соответствующая связка метаязыка. Правильно ли я понимаю, что некоторую часть теории моделей (даже ту, которая касается символов отношений, которых нет в универсальной алгебре) можно развивать, не используя таблиц истинности (при условии, что нас устраивает, что в метатеории и объектной теории одна и та же логика)?
Следующий вопрос. Если мы интерпретируем связки объектного языка как связки метаязыка и в метатеории есть аксиома исключённого третьего, верно ли, что любая структура тоже будет удовлетворять этой аксиоме? По-моему, да, так как для любой формулы
:
- для всех структур и оценок имеем ;
- для всех структур и оценок имеем по семантическому определению истины;
- общезначима.