2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение26.07.2019, 18:46 
Заслуженный участник
Аватара пользователя


20/08/14
8816
Pavia в сообщении #1407203 писал(а):
То что оно в водится через множества это мне и так известно.
А Вам известен способ дать определение функции через последовательности? Было бы любопытно взглянуть.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение26.07.2019, 19:38 
Заслуженный участник


27/04/09
28128
«Функция — это последовательность, для которой множество натуральных чисел заменили произвольным.» :mrgreen:

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение26.07.2019, 19:48 


17/07/19

55
Pavia
Pavia в сообщении #1407090 писал(а):
Дайте определение функции без последовательностей.
Дайте определение придела функции без последовательностей.

А еще меня тут троллем называют :facepalm:
Pavia в сообщении #1407203 писал(а):
Anton_Peplov
Вообще-то я бы хотел что бы на это ответил Nickname1101. То что оно в водится через множества это мне и так известно. Хотелось посмотреть на сколько выразительно у автора темы получится дать такое определения. Когда меня учили в своё время теория определений через множества была абсолютно не понятно всей группе. Поэтому потом и перечитывали через последовательности.
Что перечитывали через последовательности? Какая теория определений через множества? Вы о чем?
Я могу лишь дать вам ссылку на сообщение Anton_Peplov. Вот она post1407094.html#p1407094.
Присоединяюсь к вопросу определения функции через последовательность.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение26.07.2019, 19:50 
Заслуженный участник


27/04/09
28128

(Оффтоп)

Nickname1101 в сообщении #1407220 писал(а):
А еще меня тут троллем называют :facepalm:
Ну, разные люди разные и действуют в своих собственных интересах, не объединяйте. По поводу того поста я нажал кнопку вызова модераторов, но она что-то не сработала (пока?).

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение26.07.2019, 23:57 
Заслуженный участник


18/01/15
3303
С удивлением обнаружил вот что. Есть курс матана Ю.Г.Решетняка. Мне казалось, это хорошая книга. Я его в подробностях не смотрел, только слегка иногда внутрь заглядывал. И даже тут на форуме нескольким людям рекомендовал. Сейчас посмотрел, как там с пределами. И вот оказывается, именно так, как ТС и предлагает. Однако, это не убеждает меня в том, что в рассуждениях ТС есть рациональное зерно, а скорее побуждает к более настороженному отношению к упомянутому курсу. Я там уже и до того видел разные странности, но они мое внимание не цепляли, лишь проплывали облачком на краю... Надо будет как-нибудь почитать внимательнее, может быть.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение27.07.2019, 09:04 
Заслуженный участник


13/12/05
4655
Nickname1101 в сообщении #1407028 писал(а):
В чем проблема определить окрестности бескончено удаленных точек и сформулировать общеизвестное определение предела функции в терминах окрестностей.

В том, что бесконечностей в $\mathbb R$ нет. И приходиться искуственно их добавлять. При этом строгого понятия топологического пространства не дается. И даже если бы и давалось, это не особо помогает. В любом случае только предел по базе дает необходимую и достаточную общность для предела. И при этом я не имею ввиду какую-либо экзотику. Простой пример: как Вы дадите определения пределов $\lim\limits_{\substack{ x\to\infty \\ y\to\infty}} f(x,y)$ и $\lim\limits_{(x,y)\to\infty} f(x,y)$ "на языке окрестностей"?

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение27.07.2019, 11:39 
Заслуженный участник
Аватара пользователя


30/01/06
72407
А что означает $\lim\limits_{(x,y)\to\infty} f(x,y)?$ Простите мой склероз. Правильно ли я понимаю, что это $|(x,y)|\to\infty$?

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение27.07.2019, 13:04 


17/07/19

55
Padawan
Padawan в сообщении #1407334 писал(а):
В любом случае только предел по базе дает необходимую и достаточную общность для предела. И при этом я не имею ввиду какую-либо экзотику. Простой пример: как Вы дадите определения пределов $\lim\limits_{\substack{ x\to\infty \\ y\to\infty}} f(x,y)$ и $\lim\limits_{(x,y)\to\infty} f(x,y)$ "на языке окрестностей"?

Речь идет о первом семестре первого курса. Насколько мне известно, функций нескольких переменных там нету. А то что есть - это 150 страниц теории пределов, которые я предлагаю (с позиции непрофессионала) превратить в 50. В своем первом сообщении я подробно описал проблему. Более того, я явно обозначил вид функций, о которых идет речь ($f:\mathbb{R}\supset X\to\mathbb{R}$). Посмотрите хотя бы на содержание разделов "Предел последовательности" и "Предел функции". Я уверен, что любая двусмысленная трактовка исключена - это ни что иное, как приблизительная программа, по которой учат теорию предела в первом семестре первого курса.
Padawan в сообщении #1407334 писал(а):
В том, что бесконечностей в $\mathbb R$ нет. И приходиться искуственно их добавлять. При этом строгого понятия топологического пространства не дается. И даже если бы и давалось, это не особо помогает.
А зачем оно нужно - это топологическое пространство (на этом этапе). Да, бесконечностей нету. Возьмем и добавим. Определим их окрестности. Затем сведем 9 вариантов предела к одному определению. Я вот именно этот момент и не понимаю. В чем некорректность такого подхода для одномерного анализа?

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение27.07.2019, 13:51 


20/03/14
12041
 !  Pavia
Предупреждение за безграмотные замечания в теме, подразумевающей владение вопросом.
post1407090.html#p1407090
post1407203.html#p1407203

Munin в сообщении #1407346 писал(а):
Правильно ли я понимаю, что это $|(x,y)|\to\infty$?

Правильно.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение28.07.2019, 10:28 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Пропустила начало темы, но всё-таки хочу вставить свои пять копеек. В последнее время не читаю лекции по матану, но раньше приходилось. И попалась мне книга В.П. Хавина, ещё 1989 года издания. Так вот, там изложение начинается вообще не с предела, а с непрерывности (разумеется, функции, а не последовательности).

Мне кажется, это интуитивно гораздо более понятное свойство. Да и определение на языке эпсилон-дельта для непрерывности выглядит проще, без "костылей" в виде проколотой окрестности.

Поэтому в моем изложении порядок был такой:
Непрерывность функции
Предел функции в конечной точке (как "почти непрерывность", возможность "исправить" функцию в одной точке)
Предел функции в бесконечности
Свойства непрерывности и предела
Последовательность как частный случай функции (в основном ради введения числа $e$)

Надо заметить, что факультет не чисто математический, времени на матан мало. Поэтому определение по Гейне я вообще не упоминала. Это, правда, иногда усложняло изложение доказательств... Но общее сокращение времени было существенным.

И ещё мне понравилось, что Хавин даёт сначала понятие многочлена Тейлора (через о-малое и уточнение асимптотических равенств) и только потом дифференциал и производную. При таком подходе формула Тейлора появляется естественно, а не сваливается с неба на голову.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение28.07.2019, 11:07 


17/07/19

55
provincialka
Отличный порядок изложения тем! Но есть пара вопросов.
provincialka в сообщении #1407455 писал(а):
Мне кажется, это интуитивно гораздо более понятное свойство. Да и определение на языке эпсилон-дельта для непрерывности выглядит проще, без "костылей" в виде проколотой окрестности.
Сами по себе проколотые окрестности (если мы говорим про стандартное определение предела функции по Коши) - достаточно идейная штука. По крайней мере, когда я обнаружил в трехтомнике Кудрявцева определение предела функции в точке (именно предела, а не непрерывности) по обычной (а не по проколотой) окрестности, у меня сразу возник список вопросов. Я понимаю суть предела в том, чтобы описывать поведение функции "рядом" с точкой. Сама функция в точке может принимать какое угодно значение (если она там вообще определена). Если говорить про непрерывность, то я с Вами согласен.
provincialka в сообщении #1407455 писал(а):
Предел функции в конечной точке (как "почти непрерывность", возможность "исправить" функцию в одной точке)
Предел функции в бесконечности
Один из вопросов, косвенно затрагиваемых мною в этой теме - единообразие различных вариантов предела. Я имею в виду то, что конечные и бесконечные пределы - суть одно и то же. Они по форме и в идейном смысле могут (и на мой взгляд должны) даваться в форме одного определения (после соответствующих абзацев, вводящих "бесконечности" и их окрестности). Но мой энтузиазм видимо разделяют не многие :-) На Ваш взгляд, есть ли в этом необходимость/польза? И при таком подходе, как у Вас, сохраняется ли единообразие для конечных и бесконечных пределов?

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение28.07.2019, 11:22 
Заслуженный участник
Аватара пользователя


26/01/14
4904
Nickname1101 в сообщении #1407459 писал(а):
Я понимаю суть предела в том, чтобы описывать поведение функции "рядом" с точкой.
Это зависит от восприятия. Мне, наоборот, гораздо более естественным кажется кудрявцевское определение предела функции в точке - с непроколотыми окрестностями (более того, я его "переизобрёл" для себя, когда, подобно Вам, размышлял об оптимальном построении курса мат.анализа, не зная что оно уже есть в каком-то учебнике). Просто для меня "рядом с точкой" включает в себя саму точку.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение28.07.2019, 11:50 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Mikhail_K
Кудрявцева не читала и не очень представляю, как давать определение без проколотой окрестности.
Могу представить такое:
$$\forall\varepsilon>0\;\exists \delta > 0\;\forall x, |x-x_0|<\delta \Rightarrow|f(x)-a|<\varepsilon $$
Или то же на языке окрестностей. И, конечно, надо учесть область определения $f$, (тут я написала простейший вариант).
Но тогда, очевидно, $a=f(x_0)$, если только это значение существует.

То есть при таком подходе функция $sign^2(x)$ не имеет предела в 0.
Или там другая идея?

-- 28.07.2019, 11:54 --

Nickname1101 в сообщении #1407459 писал(а):
И при таком подходе, как у Вас, сохраняется ли единообразие для конечных и бесконечных пределов?

После обсуждения отдельно конечного и бесконечного случая на языке $\varepsilon-\delta$ вводится определение на языке окрестностей и показывается, что оно одинаковое в обоих случаях.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение28.07.2019, 11:55 
Заслуженный участник
Аватара пользователя


26/01/14
4904
provincialka в сообщении #1407461 писал(а):
Но тогда, очевидно, $a=f(x_0)$, если только это значение существует.
То есть при таком подходе функция $sign^2(x)$ не имеет предела в 0.
Именно так.
То есть определение содержательно для тех случаев, когда в точке значение как раз не существует.
Ну так, я думаю, в подавляющем большинстве случаев, где вообще нужно понятие предела функции в точке, это именно так и есть.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение28.07.2019, 11:57 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Mikhail_K
Хм... Непривычно. Но можно представить себе и такой подход... Хотя нет, я это определение использовать не буду всё-таки...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 74 ]  На страницу Пред.  1, 2, 3, 4, 5  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group