2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 кубическое уравнение с рациональными корнями
Сообщение25.07.2019, 08:44 
Заслуженный участник
Аватара пользователя


23/08/07
4780
Нов-ск
$x^3+3ax^2-\frac35x-a=0$
Пожалуйста, помогите задавать $a$ так, чтобы уравнение имело только рациональные корни (по модулю не больше единицы, различные ). Можно ли это сделать?

 Профиль  
                  
 
 Re: кубическое уравнение с рациональными корнями
Сообщение25.07.2019, 10:50 
Заслуженный участник
Аватара пользователя


01/08/06
2740
Уфа
Пусть корни уравнения: $x$, $y$ и $z$ (извините, я здесь $x$ переобозначил, но я больше к исходному уравнению не вернусь). По теореме Виета $x+y+z=-3xyz$, $xy+xz+yz=-3/5$. Когда я загнал эту систему в WolframAlpha, она мне выдала:
$$y = \frac{\sqrt{75x^4-66x^2+15}+2x}{5(1-3x^2)}.$$ Значит, $75x^4-66x^2+15=u^2$, где $u\in\mathbb{Q}$. Преобразуем: $25u^2=3(25x^2-11)^2+12$ или, переобозначив, $a^2=3b^2+12$. Приведя рациональные дроби $a$ и $b$ к общему знаменателю $c$, имеем уравнение в натуральных числах: $a^2=3(b^2+(2c)^2)$ (извините ещё раз, я тут опять переобозначил дроби $a$ и $b$ их натуральными числителями). Вспоминаем теорему Ферма—Эйлера: в разложении числа справа на простые множители тройка входит в нечётной степени, а слева — в чётной степени. Значит, уравнение решения не имеет.
Но, может быть, я где-то ошибся.

 Профиль  
                  
 
 Re: кубическое уравнение с рациональными корнями
Сообщение25.07.2019, 11:20 
Заслуженный участник
Аватара пользователя


23/08/07
4780
Нов-ск
worm2 в сообщении #1407011 писал(а):
Значит, $75x^4-66x^2+15=u^2$, где $u\in\mathbb{Q}$.
Я такую тоже получал. Похоже, облом с рацинальными решениями, спасибо.

 Профиль  
                  
 
 Re: кубическое уравнение с рациональными корнями
Сообщение25.07.2019, 14:37 
Аватара пользователя


19/06/14
48
Выразим $a$ через $x$ и построим график.
https://mega.nz/#!5jgCwS4J!MawunwBfwmqs ... 9bb55s8NtI

На отрезке [-1,1] функция $a(x)$ непрерывна кроме точек $\pm \frac{1}{\sqrt{3}}$, которые не могут быть решениями.
Следует ли из этого что существует бесконечное множество рациональных чисел $x$ на [-1,1] , каждому из которых будет соответствовать действительное $a$?
Вопрос о рациональности $a$ как я понял не стоит.

Не знаю помогут ли мои рассуждения.

P.S. Жаль что нельзя вставлять графику без ухищрений.

 Профиль  
                  
 
 Re: кубическое уравнение с рациональными корнями
Сообщение25.07.2019, 15:48 
Заслуженный участник
Аватара пользователя


13/08/08
13760
Fizykochemik, рассматривая график, можно понять, что при любом значении $a$ уравнение будет иметь три действительных корня. При $a\in [-0.2,0.2]$ все три корня по модулю будут не больше единицы.
При рациональном $a$ один из корней будет рациональным. Но требуется, чтобы все три были рациональны. А это по графику никак не увидеть :-(
:?:

 Профиль  
                  
 
 Re: кубическое уравнение с рациональными корнями
Сообщение25.07.2019, 15:57 
Заслуженный участник


16/02/13
3586
Владивосток
Fizykochemik в сообщении #1407033 писал(а):
Вопрос о рациональности $a$ как я понял не стоит
Не стоит он по очень простой причине: $a$ является произведением трёх корней, кои по условию рациональны.

 Профиль  
                  
 
 Re: кубическое уравнение с рациональными корнями
Сообщение26.07.2019, 12:34 
Аватара пользователя


19/06/14
48
Из трёх корней 2 сопряженные, поэтому если один из сопряженных корней рационален, то и второй рационален, и наоборот. Если они иррациональны, тогда их произведение видимо будет рационально, что нужно ещё доказать. Правда остаётся неясность с третьим корнем.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: BVR


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group