многомерная линейная алгебра, конечно, полезна, но для многих приложений аналитическая геометрия попросту удобнее,
Отмечу, что есть задачи очень многомерные, в которых одной лишь линейной алгебры недостаточно, а нужно очень хорошо представлять себе именно геометрию. Например алгоритмы оптимизации, где точка постепенно спускается по ландшафту функции.
(Оффтоп)
Такое путешествие по горам и оврагам увлекательно описано в статье А.Тьмеладзе, Нелинейное программирование, Квант, 1976 (?), номер не помню.
Если же геометрии не понимать, то понять, почему вдруг алгоритм застревает, будет невозможно.
А соответствующее понимание геометрии можно приобрести, думаю, только в результате "тренировки на кошках", т.е. в данном случае изучения аналитической геометрии на плоскости и в трехмерном пространстве. Включая, внезапно, всевозможные типы поверхностей второго порядка.
И не следует думать, что задачи оптимизации --- это нечто слишком простое, недостойное чистого математика. Они как раз сложные, и требуют знания математики весьма разной. (Например, пресловутая лемма Морса намедни пригодилась...). То есть этот пассаж надо понимать не так, что приматам надо непременно учить много линейной алгебры, а наоборот, что "чистым" надо учить ангем, потому что прикладные с такими задачами могут и не справиться.(впрочем, это лишь один пример).
-- 06.07.2019, 21:13 --vpb в сообщении #1403537 писал(а):
Как раз наоборот: думающему человеку легко и приятно изучать такие наглядные, полезные и интеллектуально богатые предметы.
Если бы вы сказали это про линейную алгебру, было бы верно. А так..
Не вижу, почему про ангем это неверно. Мой опыт, во всяком случае, именно такой. Как раз это не очень верно для "линейки", поскольку если там и есть наглядность, то только в силу того, что человек ранее через ангем (и через школьную геометрию тоже) приобрел некоторое геометрическое мышление.
-- 06.07.2019, 21:35 --Сейчас с точки зрения любопытства открыл, случайно, Боревич-Шафаревича. Посмотреть, может, правда есть части математики, для которых аналитическая геометрия бесполезна, а то и вредна ? В первой главе никакая геометрия явно не упоминается. Впрочем, как-то трудно себе представить, как можно изучать арифметику квадратичных форм, не зная предварительно их геометрии. Во второй главе сначала уравнение Пелля (которое, как известно, связано с целыми точками некоторой решетки, лежащими на гиперболе), потом решетки и лемма Минковского, а где-то ближе к концу в упражнениях --- другое доказательство теоремы Минковского-Хассе, в котором используется некий эллипсоид в трехмерном пространстве. Короче, геометрия так и прёт... А самый лучший способ получить представления о геометрии, по моему --- добросовестно изучить ангем.