Эта вакуумная метрика заведомый уродец : )
В плоскости
с уменьшениeм
до нуля периметр подскакивает до бесконечность, а "чуть выше" или "ниже" (
)периметр подскакивает до большого (но конечного) значения (проходя "помимо" кольца) и потом резко сжимается до нуля при
.
Притом
настоящая монотонная радиальная координата; к этому курьезному метрическому поведению ("расширению пространства на сингулярности кольца" - для нулевого
вплоть до бесконечности) - просто надо привыкнуть:))
Что самое удивительное - притом коеффициент "замедления времени"
(соответствующий классической "силе потенциала") на
- при монотонном изменении
, меняется также монотонно (не варьирует, "проходя помимо сингулярности кольца") - несмотря на бешеные осцилляции периметра вверх-вниз. (из-за этих осцилляций, мы даже не можем перейти наподобию Шварцшильда к другой радиальной координате для которой периметр кольца менялся бы пропорционально - по меньшей мере, если хотим сохранить накрытие многообразия "внутри кольца" которое обеспечивает "оригинальная координата"
).
Так что "кольцом" такого можно назвать разве что с большой натяжкой (оно НЕ сводится к ньютоновском кольце в пределе малых
и
- классического предела тут не существует хотя бы из-за того, что отдельного параметра "радиуса кольца" не существует -
играет роли и одного и другого).
ставим метки и рисуем кривые мы все-таки в координатном пространстве, т.е. в обычном
. Это потом им в кривом многообразии что-то там соответствует.
Т.е "не понимая смысл" координат мы размечаем ими декартово-цилиндрической системе координат в эвклидовом пространстве - и на базе этого делаем выводы?
К такому кстати сводится и "подход" автора статьи по моей ссылке:
1) Размечает некими координатами декартово-цилиндрическую систему координат в эвклидовом пространстве - и рисует поверх "поля" инвариантов кривизны
2) Берет ньютово поле кольца в декартово-цилиндрическую систему координат в эвклидовом пространстве - рисует поверх потенциал
3) Сравнивает визуально 1) и 2) и потому что "похожи" - говорит что это "ОТОшное решение для кольца"
По моему подход 3) неправомерeн хотя бы потому, что путем выбора разных координат можно "гнуть и искажать" картинку 1) как угодно - нельзя ожидать что при перемене координат, сохранятся даже ее топологические особености и особые точки (сравним топологию аналогичных 2-"картинок" поля Шварцшильда в координат шварцшильда и Крускала - они топологически разные, из-за прошлой бесконечности).
Следовательно из "визуальной похожести", нельзя делать каких-либо выводов.
Но даже и особые точки/топологии картинок у автора, соответствуют ньютонова распределения потенциала кольца только частично.... так что это решение ОТО, все-таки не соответствует классическому "кольцу" (в обычном смысле).
упрощается до изотропного
... с короткодействующим притяжением.
Если зафиксировать
и считать предел при
, разложение в ряд тейлора дает в первом порядке
что соответствует Ньютоновой гравитации; т.е. на бесконечности поведение нормальное как для ньютоновой гравитации а не "короткодействующее"?
Существование таких многообразий - статичные, вакуумные, на бесконечности переходящие в плоских, с единственном параметром
(отличных от шварцшильдова многообразия) - для меня оказалось несколько неожиданным.
Если вслед за Хокингом считать, что "изначальные" ЧД имеют шанс на существование (как чисто солитонные образования поля) - то такие уродцы ничем не хуже (даже лучше ибо симметрия у них поменьше) : ))