А вот если у квадрата склеить стороны другими способами, то получатся бутылка Клейна и проективная плоскость. Интересно, можно ли их вложить в какое-то пространство с нулевой кривизной.
Эйлерова характеристика связой суммы
![$g$ $g$](https://dxdy-04.korotkov.co.uk/f/3/c/f/3cf4fbd05970446973fc3d9fa3fe3c4182.png)
торов равна
![$2-2g$ $2-2g$](https://dxdy-02.korotkov.co.uk/f/5/b/1/5b1b1c34237dd652a0015ee9e189dfb482.png)
, а
![$g$ $g$](https://dxdy-04.korotkov.co.uk/f/3/c/f/3cf4fbd05970446973fc3d9fa3fe3c4182.png)
проективных плоскостей
![$2-g$ $2-g$](https://dxdy-03.korotkov.co.uk/f/2/d/0/2d0aed7d84bd68336d297071ca13665d82.png)
. Поэтому метрик нулевой кривизны не баывает ни на каких связных компактных поверхностях, кроме тора и бутылки Клейна, по
теореме Гаусса -- Бонне: интеграл от гауссовой кривизны, делённой на
![$2\pi$ $2\pi$](https://dxdy-02.korotkov.co.uk/f/5/a/7/5a7b63fcb316fdefe42e319d18ab939a82.png)
, равен эйлеровой характеристике. (
По ссылке написано, как будто гауссова кривизна есть скаляр, а для интегрирования её умножают на форму площади, так что это как будто только про ориентируемые поверности. На самом деле гауссову кривизну можно определить в терминах внутренней геометрии, и это будет не скаляр, а 2-форма, линейно выражающаяся через кривизну, и теорема Гаусса -- Бонне верна для неориентируемых поверхностей тоже.)
На бутылке Клейна метрика нулевой кривизны есть: приходит с этого самого квадратика. Вложить тоже можно, хотя бы по
теореме Нэша о вложении: любое риманово многообразие изометрически вкладывается в стандартное евклидово пространство достаточно большой размерности. Хотя это из пушки по воробьям, скорее всего, вложение несложно написать явно.