2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19 ... 22  След.
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 01:00 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
Geen в сообщении #1394913 писал(а):
Да, вроде бы, в уме легко пересчитывается - всё то же самое, только добавляются нули "для икса".
Да, спасибо, уже проверил на бумажке.

Однако мне до сих пор так и не удаётся вкурить в чём подвох со следующим (на мой взгляд истинным) утверждением:
SergeyGubanov в сообщении #1394668 писал(а):
Сингулярная часть тензора кривизны Римана взятая из книги Э. Пуассона: $$
{A^{\alpha}}_{\beta \gamma \delta} = \varepsilon \left( 
\left[ {\Gamma^{\alpha}}_{\beta \delta} \right] n_{\gamma}
- \left[ {\Gamma^{\alpha}}_{\beta \gamma} \right] n_{\delta} \right) \eqno(3.7.6)
$$ равна нулю просто в силу того, что сами связности равны нулю ${\Gamma^{\alpha}}_{\beta \gamma} = 0$.
Здесь какая-то чёрная магия. По определению следующему после формулы (3.7.9) для четырёхмерного ТЭИ имеем:$$
S_{\alpha \beta} \equiv \frac{1}{8\pi} \left( A_{\alpha \beta} - \frac{1}{2} g_{\alpha \beta} A \right)
$$ Потом делаются какие-то хитрые чёрные заклинания и внезапно появляется совершенно другая формула для трёхмерного ТЭИ:
$$
S_{a b} = -\frac{\varepsilon}{8 \pi} \left( [K_{a b}] - [K] h_{a b} \right) \eqno(3.7.11)
$$ Согласно первому определению четырёхмерный ТЭИ $S_{\alpha \beta}$ равен нулю, а согласно второй формуле трёхмерный ТЭИ $S_{a b}$ нулю не равен. Мне это кажется ненормальным, мягко говоря :evil: :evil: :evil:

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 01:26 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Так вы же до сих пор правильно $[\Gamma^{\alpha}{}_{\beta\gamma}]$ не посчитали.

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 08:21 
Аватара пользователя


10/12/11
2430
Москва
Geen в сообщении #1394913 писал(а):
Кстати, нашёл ещё одну "плоскую" статическую вакуумную метрику (и других, кажется, больше нет):
$$(1+ax)^{-2/3}dt^2-dx^2-(1+ax)^{4/3}(dy^2+dz^2)$$

Совпадает с моей (13) post913293.html#p913293 (а по второй ссылке с точностью до преобразований координат):
post913423.html#p913423.

Спор был, какая метрика более правильная для пластины с конечной толщиной.
Я склоняюсь именно ко второй, где вакуумное решение не плоское и тензор кривизны Римана отличен от нуля.
Я даже пытался внутреннее решение тогда найти.

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 09:44 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
Munin в сообщении #1394922 писал(а):
Так вы же до сих пор правильно $[\Gamma^{\alpha}{}_{\beta\gamma}]$ не посчитали.
Я их правильно посчитал. Они равны нулю. У нулевых связностей нулевой разрыв на поверхности склейки. ТЭИ нулевой. Это железобетонно.

Однако, я нашёл в чём подвох.

Перед тем как я раскажу в чем дело, надо обратить внимание на то, что индуцированная трёхмерная метрика описывает плоское трёхмерное пространство.

Так вот, подвох в том, что, внезапно, пространства Минковского бывают разные. Я теперь эти разные пространства Минковского даже на полном серьёзе продавать эфиристам смогу :D.

Вот это пространство Минковского номер один:
$$
g^{-}_{\mu \nu} dx^{\mu}_{-} dx^{\nu}_{-} = dt_{-}^2 - \left( dx_{-} + v(t) \, dt_{-} \right)^2 - dy_{-}^2 - dz_{-}^2
$$
А вот это пространство Минковского номер два:
$$
g^{+}_{\mu \nu} dx^{\mu}_{+} dx^{\nu}_{+} = dt_{+}^2 - \left( dx_{+} - v(t) \, dt_{+} \right)^2 - dy_{+}^2 - dz_{+}^2
$$
На первый взгляд, казалось бы физической разницы между ними нет, но она есть.

Склеиваем эти два физически разных пространства Минковского:
$$
dt_{-}^2 - \left( dx_{-} + v(t) \, dt_{-} \right)^2 - dy_{-}^2 - dz_{-}^2 =
dt_{-}^2 - dy_{-}^2 - dz_{-}^2,
$$$$
dt_{+}^2 - \left( dx_{+} - v(t) \, dt_{+} \right)^2 - dy_{+}^2 - dz_{+}^2 =
dt_{+}^2 - dy_{+}^2 - dz_{+}^2,
$$
$$
t_{+} = t_{-}, \qquad y_{+} = y_{-}, \qquad z_{+} = z_{-},
\qquad  \frac{dx_{+}}{dt} = v(t),
\qquad \frac{dx_{-}}{dt} = -v(t).$$
У склеиваемых разных пространств Минковского есть ненулевая связность $\Gamma^{\alpha}_{\beta \gamma}$ и эта связность терпит разрыв на поверхности склейки. Из за этого получается вклад в тензор кривизны Римана на поверхности склейки.

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 12:03 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
Рассмотренный гравитационный эффект аналогичен эффекту Ааронова-Бома в электродинамике. Здесь у нас есть чисто калибровочное гравитационное поле $V^i (t) \ne 0$:
$$
g^{\pm}_{\mu \nu} dx^{\mu} dx^{\nu} = dt^2 - \gamma_{i j} \left( dx^i \mp V^i (t) \, dt \right) \left( dx^j \mp V^j (t) \, dt \right) $$ С точки зрения волновой функции гравитационное поле $V^i$ включается так:
$$
\frac{\partial}{\partial t}
\quad \to \quad
\frac{\partial}{\partial t} \mp V^{i} \frac{\partial}{\partial x^i}
$$ и для каждого волнового вектора ${\mathbf k}$ оно устраняется следующим унитарным преобразованием: $$\exp( - i \omega t + i {\mathbf k} {\mathbf x} )
\quad \to \quad
\exp( - i \omega t + i {\mathbf k} \left( {\mathbf x} - {\mathbf r}_{\pm}(t) \right) )
=U_{\pm}(t) \,
\exp( - i \omega t + i {\mathbf k} {\mathbf x} )
$$$$
U_{\pm}(t) = \exp( - i {\mathbf k} {\mathbf r}_{\pm}(t)  )
$$$$
\frac{d r^i_{\pm}}{dt} = \pm V^i (t)
$$ Если теперь мы склеим одно чисто калибровочное гравитационное поле $g^{-}_{\mu \nu}$ с другим чисто калибровочным гравитационным полем $g^{+}_{\mu \nu}$, то мы утратим возможность сделать унитарное преобразование всюду одинаково. То есть точно так же как и в эффекте Ааронова-Бома волновая функция будет "чувствовать" чисто калибровочное гравитационное поле $V^i (t)$.

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 16:47 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Ну наконец-то.

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 18:47 


17/10/16
5198
arseniiv в сообщении #1394892 писал(а):
Нету, только для времени, а базис пространственных сечений мы можем крутить как угодно.


Я подумал вот о чем: если взять ньютоновский график движения в координатах x-t, а затем стереть с него эти оси координат, то оставшиеся кривые (траектории движения) не дают возможности однозначно восстановить стертые оси обратно, и сами траектории при этом становятся неопределенными. Часть информации теряется. А если взять картину мировых линий массивных тел в пространстве-времени, то будет ли она иметь однозначный смысл без заданных мировых линий лучей света? Или же глупо говорить о картине мировых линий массивных тел без мировых линий лучей света, т.к. лучи света - это неустранимая, встроенная в систему ее часть, а не просто условные координаты x-t?

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 18:51 
Заслуженный участник
Аватара пользователя


01/09/13
4790
Так а на самом деле кроме мировых линий и нет ничего.

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 19:14 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Если взять мировые линии массивных частиц, то станет видно, что они вписаны в некий конус. Чем больше таких мировых линий мы проводим, тем чётче этот конус вырисовывается, и в пределе восстанавливается однозначно. То есть, СТО можно было бы открыть даже в мире, в котором света вообще нет.

С другой стороны, в физике есть и массивные и безмассовые частицы. Непонятно, зачем нам ограничивать себя только первыми. Вторые все идут изотропно.

Ну и наконец. Мировые линии - это классическая физика частиц. На самом деле, это приближение истинной физики полей и волн. Наблюдая картину волн, тоже можно восстановить световые конусы, как для волн безмассовых полей ($\partial^2\varphi=0$), так и для волн массивных полей ($(\partial^2-m^2)\varphi=0$).

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 20:30 


17/10/16
5198
Munin в сообщении #1395069 писал(а):
Чем больше таких мировых линий мы проводим, тем чётче этот конус вырисовывается


Хм... Таким образом можно восстановить и стертые координаты ньютоновского графика. Правда, восстанавливается только направление осей, но не их масштаб. В СТО что-то подобное происходит: мировые линии света имеют направление, но не имеют масштаба. Я всегда представлял себе пространство-время, как нечто изотропное, где каждый наблюдатель самостоятельно определяет пространственное и временное направление. Пространство-время само по себе никак не размечено и изотропно. Но похоже, что оно все же размечено направлениями распространения световых лучей. Есть совершенно определенные направления в пространстве-времени, вдоль которых распространяется свет и вдоль которых интервал равен нулю. Эти направления образуют некоторую абсолютную сетку в пространстве-времени, которую и можно использовать в качестве координат. Она, правда, не совпадает с пространственными и временными направлениями, но это уже не так важно. По моему, в первой книге МТУ тоже об этом говорится.

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 21:35 
Заслуженный участник
Аватара пользователя


30/01/06
72407
С одной стороны, всё это верно. С другой стороны, пространство-время всё-таки изотропно - но по отношению к поворотам Лоренца (также часто называемых бустами).

И с третьей стороны, слово "изотропный" в СТО и ОТО часто применяется в другом смысле - как синоним слова "светоподобный".

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 21:52 
Заслуженный участник


27/04/09
28128
sergey zhukov в сообщении #1395057 писал(а):
А если взять картину мировых линий массивных тел в пространстве-времени, то будет ли она иметь однозначный смысл без заданных мировых линий лучей света? Или же глупо говорить о картине мировых линий массивных тел без мировых линий лучей света, т.к. лучи света - это неустранимая, встроенная в систему ее часть, а не просто условные координаты x-t?
Это, наверно, вопрос об изображении псевдоевклидова пространства с помощью евклидова. В евклидовом квадратичная форма положительно определена, и у такой формы нет каких-то особых «отметок» на пространстве, её гиперповерхности ненулевого уровня гомеоморфны сферам (соответствующей размерности). Псевдоевклидовы квадратичные формы хитрее (но тут мы ограничимся случаем, когда в сигнатуре один плюс, а не произвольное количество — это то, с чем имеют дело наши конкретные СТО и ОТО). Гиперповерхности ненулевого уровня здесь уже гомеоморфны гиперболоидам однополостным и двуполостным в зависимости от того, меньше или больше нуля выбранный уровень (ну, для двумерного пространства-времени они совпадают в гиперболе), и гиперповерхность нулевого уровня не состоит просто из одной точки, это, как вы уже знаете, конус.

Так вот когда мы изображаем такое пространство с квадратичной формой на некотором аффинном, лучший вариант — это отметить на нём поверхности уровня; это единственное изображение, другой набор поверхностей задаст однозначно другую форму.

Когда нам важно знать только знаки скалярных квадратов векторов, достаточно изобразить только поверхность нулевого уровня и маркировать, какая часть пространства «идёт с каким знаком»: для евклидова в итоге у нас будет нужда только отметить ноль — у всех остальных векторов квадрат положительный — а для псевдоевклидова тот самый нулевой конус и всё-таки пометить, с какой стороны от него плюс, с какой минус.

Когда нам важно знать не только знаки, всё-таки придётся выделить как минимум поверхности уровня $\pm1$. Или задать ортогональный базис, подписав значения квадратов векторов; или уж сразу ортонормированный и подписать только знаки — но множество разных таких ортонормированных базисов может задавать одну и ту же квадратичную форму. Ну и ещё можно заметить, что какой-то из ортонормированных базисов оказывается удобно представлять при рисовании ортонормированным же базисом евклидова пространства; но такое удаётся сделать только с одним базисом, а все остальные пролетят. Изображение же нулевого конуса всего одно и потому таких проблем не имеет — но, повторюсь, для рисунков, изображающих какие-то количественные соотношения, одного конуса недостаточно. В общем «неустранимая, встроенная в систему часть» — это собственно линейная структура и квадратичная форма в целом, ну или если считать линейную структуру очевидной, то форма, и визуально — набор её поверхностей уровня.

sergey zhukov в сообщении #1395086 писал(а):
Таким образом можно восстановить и стертые координаты ньютоновского графика. Правда, восстанавливается только направление осей, но не их масштаб.
Нет, только направление «оси» времени. Вообще не очень хорошо говорить о каких-то осях, когда предполагается потом разбираться с ОТО: оси применимы только к аффинным системам координат (и декартовым как их частному случаю, когда есть квадратичная форма и мы к ней поближе подстраиваемся), и даже там от них мало толку, а координатные 1-формы куда нагляднее. Их опять удобно представлять набором гиперповерхностей уровня, в этом случае плоских, и в случае декартовой системы — ещё и «слабоортогональных» (таких $U, V$, что $U\cap W \perp V\cap W$, где $W = (U\cap V)^\perp$; в таком же смысле две плоскости перпендикулярны в школьной геометрии, хотя по-настоящему они ортогональны быть не могут, имея нетривиальное пересечение). Так что вместо оси времени получается 1-форма абсолютной временной координаты, плюс-минус константа. (До кучи, поверхности уровня этой формы — единственно возможные поверхности одновременности ньютоновской физики.)

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 21:59 
Заслуженный участник
Аватара пользователя


30/01/06
72407
arseniiv в сообщении #1395106 писал(а):
Нет, только направление «оси» времени.

Нет, только нормальное к нему направление "плоскости пространства". Один раз оговорка, два раза - надо поправить.

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение24.05.2019, 22:15 
Заслуженный участник


27/04/09
28128
Упс, да. Хорошо что я хоть написал про поверхности уровня. Действительно, у нас же нету там как раз нужного для превращения 1-формы в направляющий вектор злополучной оси, более чем не просто так она мне не нравилась, скалярного произведения.

-- Сб май 25, 2019 00:16:18 --

И это, конечно, очень грубая ошибка для моего уровня, плохо вышло.

 Профиль  
                  
 
 Re: Пространство-время ОТО
Сообщение25.05.2019, 13:39 


17/10/16
5198
arseniiv в сообщении #1395106 писал(а):
Гиперповерхность нулевого уровня не состоит просто из одной точки, это, как вы уже знаете, конус.


Значит, точке начала координат евклидова пространства соответствует конус псевдоевклидова пространства? Я всегда считал, что конусу соответствует плоскость $t=0$ евклидова пространства. Знаете, если вместо координаты $t$ каждой точки евклидовой плоскости подставить расстояние до нее от начала координат:
Изображение
Мне еще всегда казалось, что поэтому именно стенки конуса должны соответствовать тому, что у Ньютона составляло "сейчас".
arseniiv в сообщении #1395106 писал(а):
а координатные 1-формы куда нагляднее

Так 1-форма - это просто поверхности уровня координат? Скажем, на поверхности уровня 0 соответствующая координата всюду равна 0?

Любые неоднородные и анизотропные сплошные среды описываются тензорами. Можно ли тензор считать просто математической характеристикой анизотропии и неоднородности?
Например, тензор теплопроводности в трехмерном пространстве показывает, на что нужно умножить единичный коэффициент теплопроводности (единичный коэффициент теплопроводности по каждой оси зависит от нашего определения координатной сетки) в зависимости от координат и от направления в точке для вычисления потока тепла при заданном в этих же координатах градиенте температуры. Вдоль выбранного направления тепло может течь в одну или в другую сторону в зависимости от знака градиента температуры. Если в обоих этих случаях коэффициент теплопроводности в веществе будет одинаковым, то тензор будет симметричным. В противном случае он будет не симметричным (так сказать, полупроводниковая теплопроводная среда).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 330 ]  На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19 ... 22  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Bing [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group