2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Дифференциал аргумента второго порядка
Сообщение20.05.2019, 20:27 


28/01/15
668
Учебник "Конспект лекций по высшей математике" Д.Т. Письменный (2015), страница 191.
$d^2x = d(dx) = d(1 \cdot dx) = dx \cdot d(1) = dx \cdot 0 = 0$
Не могу понять фрагмент выкладки $d(1 \cdot dx) = dx \cdot d(1)$.

 Профиль  
                  
 
 Re: Дифференциал аргумента второго порядка
Сообщение20.05.2019, 21:33 
Заслуженный участник


29/08/13
285
В таких записях подразумевается, что $d$ не действует на $dx$, а только на выражение, стоящее перед $dx$. Если бы было $d(f(x)dx)$, то всё было бы наглядно: $$d(f(x)dx) = d(f(x))\cdot dx = f'(x)dx\cdot dx = f'(x)dx^2$$
А в записи $d(dx)$ формально коэффициент перед $dx$ просто равен $1$, а $d(1) = 0\,dx$, то есть $d(dx) = 0\,dx^2$.

(Оффтоп)

А вообще, если честно, я не очень понимаю, зачем рассматривать дифференциалы высших порядков в таком смысле вне контекста цельных многочленов Тейлора (струй) или критических точек. Вроде же когда дело до них доходит замены всякие уже существенно нелинейными становятся.

 Профиль  
                  
 
 Re: Дифференциал аргумента второго порядка
Сообщение20.05.2019, 21:49 
Заслуженный участник
Аватара пользователя


30/01/06
72407
VanD в сообщении #1394259 писал(а):
В таких записях подразумевается, что $d$ не действует на $dx$, а только на выражение, стоящее перед $dx$.

Что само по себе требует доказательства, и верно только в случае, когда $x$ независимая переменная.

Solaris86
Я посмотрел Босса, Фихтенгольца, Кудрявцева, Ильина-Позняка, Зорича - нигде нет ничего похожего на эту выкладку. Может быть, стоит этот материал изучить по другим источникам.

 Профиль  
                  
 
 Re: Дифференциал аргумента второго порядка
Сообщение20.05.2019, 22:30 
Аватара пользователя


15/12/18

621
Москва Зябликово
Можно посмотреть Харди Курс чистой математики Глава VII

 Профиль  
                  
 
 Re: Дифференциал аргумента второго порядка
Сообщение20.05.2019, 23:15 
Заслуженный участник


29/08/13
285
Munin в сообщении #1394261 писал(а):
VanD в сообщении #1394259 писал(а):
В таких записях подразумевается, что $d$ не действует на $dx$, а только на выражение, стоящее перед $dx$.

Что само по себе требует доказательства, и верно только в случае, когда $x$ независимая переменная.

Дык ведь так оно в озвученной изначально книжке и определяется. В ряде курсов это просто по определению будет. Вроде ничего важного при таком определении не теряется?

Зато куда проще получается конструкция. А иначе она на мой вкус какая-то недомотивированная выходит: уровень абстрактности взвинтили, а при этом работаем с отображениями линейных пространств, которые линейность не уважают. Но мы всё никак отстать от линейных структур не хотим, цепляемся за них из последних сил, вместо того, чтобы отдать их уже с концами в касательное пространство по-честному и ничего не отождествлять.

 Профиль  
                  
 
 Re: Дифференциал аргумента второго порядка
Сообщение20.05.2019, 23:18 


28/01/15
668
VanD в сообщении #1394259 писал(а):
В таких записях подразумевается, что $d$ не действует на $dx$, а только на выражение, стоящее перед $dx$. Если бы было $d(f(x)dx)$, то всё было бы наглядно: $$d(f(x)dx) = d(f(x))\cdot dx = f'(x)dx\cdot dx = f'(x)dx^2$$
А в записи $d(dx)$ формально коэффициент перед $dx$ просто равен $1$, а $d(1) = 0\,dx$, то есть $d(dx) = 0\,dx^2$.

Вот, точно, спасибо!
Я сейчас перечитываю матан и стараюсь заполнить все пробелы.

Всем спасибо за ответы!

 Профиль  
                  
 
 Re: Дифференциал аргумента второго порядка
Сообщение20.05.2019, 23:50 
Заслуженный участник
Аватара пользователя


23/07/08
10887
Crna Gora
Igrickiy(senior) в сообщении #1394263 писал(а):
Можно посмотреть Харди Курс чистой математики Глава VII
Скачал, просмотрел главу VII. О дифференциалах только один пункт 160. О втором дифференциале ничего. Дифференциал определяется как произведение производной и приращения независимой переменной. Поясните, пожалуйста, более конкретно, куда смотреть и как это помогает разобраться в вопросе.

 Профиль  
                  
 
 Re: Дифференциал аргумента второго порядка
Сообщение21.05.2019, 10:48 
Аватара пользователя


15/12/18

621
Москва Зябликово
svv в сообщении #1394282 писал(а):
О дифференциалах только один пункт 160. О втором дифференциале ничего. Дифференциал определяется как произведение производной и приращения независимой переменной.

Я дал ссылку на Харди просто как на классика и дополнение к
Munin в сообщении #1394261 писал(а):
Я посмотрел Босса, Фихтенгольца, Кудрявцева, Ильина-Позняка, Зорича

Достаточно подробно этот вопрос обсуждается у А.Я.Хинчина в "Восьми лекциях....".

 Профиль  
                  
 
 Re: Дифференциал аргумента второго порядка
Сообщение21.05.2019, 15:13 
Заслуженный участник
Аватара пользователя


23/07/08
10887
Crna Gora
А, ясно, спасибо.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 9 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: DariaRychenkova


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group