2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Заполнение плоскости...
Сообщение26.03.2019, 11:53 
Заслуженный участник
Аватара пользователя


11/03/08
10066
Москва
Изображение

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение26.03.2019, 12:15 
Заслуженный участник
Аватара пользователя


22/01/11
2641
СПб
предельная кривая заполняет плоскость?

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение26.03.2019, 12:25 
Заслуженный участник
Аватара пользователя


09/09/14
6328
Ух-ты! Построение кривой Пеано одними только циркулями, без линеек :D

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение26.03.2019, 12:28 
Заслуженный участник
Аватара пользователя


31/01/14
11418
Hogtown
grizzly в сообщении #1384183 писал(а):
х-ты! Построение кривой Пеано одними только циркулями, без линеек
Токо это не циркули, а эпициклуляры (?) Шестеренки, в общем

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение26.03.2019, 16:47 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
grizzly в сообщении #1384183 писал(а):
Построение кривой Пеано
Данная кривая — это кривая Гильберта.

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение26.03.2019, 17:19 
Заблокирован


19/02/13

2388
Красиво! А ещё в каждой системе отрезков можно менять частоты вращения для разных звеньев, и будут получаться разные кривые. Только, подозреваю, большая часть их будет самопересекающимися.

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение26.03.2019, 19:07 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Не очень понимаю, при чём здесь заполнение плоскости. Это одна итерация кривой Гильберта (кусочно линейной кривой, которую почти можно видеть на последней картинке), а предыдущие картинки — это частичные суммы её ряда Фурье.

Почему это написано здесь, а не в первом посте, — тоже не понимаю.

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение05.04.2019, 17:59 
Аватара пользователя


12/10/16
654
Almaty, Kazakhstan
единичная точка в масштабе, нет?

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение08.04.2019, 11:08 
Аватара пользователя


12/10/16
654
Almaty, Kazakhstan
или струны, из теории струн.

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение08.04.2019, 20:07 
Заслуженный участник


27/04/09
28128
Soul Friend
Поясните, что ли, что именно вы спрашиваете.

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение09.04.2019, 16:35 
Аватара пользователя


12/10/16
654
Almaty, Kazakhstan
arseniiv
если это :
alcoholist в сообщении #1384182 писал(а):
предельная кривая

(замкнутая)
и
g______d в сообщении #1384230 писал(а):
одна итерация кривой Гильберта

(заполняющая трёхмерное пространство (здесь про кривую Гильберта))
можно ли интерпретировать такие линии в сжатом виде, без пустот (без взаимопересечении на двумерной плоскости), как геометрическую точку идемпотентную к операции масштабирования ? (хоть точка и нульмерный объект)
Ну и совсем профанская мысль:
Если воспринимать струны как одномерные протяжённые объекты, могут ли струны иметь вид как на картинке с первого поста?

(Оффтоп)

не могу точно припомнить, есть то ли теорема, то ли предположение, что методом спирографа можно начертить любую кривую.

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение09.04.2019, 20:19 
Заслуженный участник


27/04/09
28128
Soul Friend в сообщении #1386772 писал(а):
без пустот (без взаимопересечении на двумерной плоскости)
Одновременно без пустот и без самопересечений непрерывной кривой не получится, насколько помню.

Soul Friend в сообщении #1386772 писал(а):
как геометрическую точку идемпотентную к операции масштабирования ?
Звучит как бред. Нет уж, точки плоскости — это вот те, сколько их там есть, никаких новых туда уже не добавить.

Soul Friend в сообщении #1386772 писал(а):
идемпотентную к операции масштабирования
Между прочим не любое преобразование подобия оставляет каждую точку на месте. В общем случае практически никакую.

Кроме того (по крайней мере в обычной алгебре) идемпотентность — это не то, что вы хотели ей назвать.

Soul Friend в сообщении #1386772 писал(а):
Если воспринимать струны как одномерные протяжённые объекты, могут ли струны иметь вид как на картинке с первого поста?
Если струны из теории струн, скорее всего нет. Классические вроде должны быть гладкими.

И потом, зачем?

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение23.08.2019, 16:41 
Аватара пользователя


12/10/16
654
Almaty, Kazakhstan
arseniiv в сообщении #1386806 писал(а):
Звучит как бред. Нет уж, точки плоскости — это вот те, сколько их там есть, никаких новых туда уже не добавить.

А модель расширения вселенной разве не добавляет новые координаты (точки) в пространстве, оставляя материальные объекты на местах ?

 Профиль  
                  
 
 Re: Заполнение плоскости...
Сообщение23.08.2019, 17:18 
Заслуженный участник


27/04/09
28128
Нет. А ещё точки и координаты — вещи разные.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 14 ] 

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: 12d3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group