Если я правильно понимаю, то все, что Вы перечисляете это методы решить сложнейшую задачу
То, что я перечислил показывает, что попытка решить эту задачу из первых принципов дело безумно сложное, но сама задача довольно простая. Первое, что надо сообразить, это что закон Ома - вещь макроскопическая и приближенная. Поэтому вместо микроскопических законов надо пользоваться усредненными - макроскопическими, - ведь ни кто не считает кривошипно-шатунный механизм с помощью квантовой хромодинамики. Тогда сложную систему надо разделить на электроны и все остальное, и посмотреть, как это самое "все остальное" действует на среднестатистический электрон. Простая гидродинамическая аналогия показывает, что на языке уравнений Ньютона должна возникнуть сила трения, пропорциональная скорости. Сами уравнения Ньютона известным способом получаются из уравнений КЭД в некотором приближении, так что как проделать этот шаг давно известно. Теперь осталось выяснить откуда берется эта самая сила трения. В этом месте годится школьное рассуждение - что-то обо что-то стукается, теряя при каждом "ударе" часть скорости в направлении поля. Число таких ударов пропорционально скорости, значит потеря скорости (отрицательное ускорение) это та самая тормозящая сила, которую мы и искали.
Если слово "удар" не нравится, и хочется чего-то электродинамического, возьмите случайный электростатический потенциал, как предлагает уважаемый
Alex-Yu. Тут расчет будет посложнее. Электрон, изначально двигавшийся вдоль поля в таком потенциале "отвернет в сторону", уменьшив направленное перемещение (ток), но вместо него может прибежать другой, до этого бежавший в другом направлении. Если все это аккуратно учесть, то ответ (эффективно) получится тот же самый - для
направленного движения электронов возникнет эффективная тормозящая сила,пропорциональная скорости электрона. Правда эта сила его не тормозит, а меняет направление его скорости так, что движение из упорядоченного становится неупорядоченным.
Немного ранее amon записывал выражение для связи плотности тока и (усредненной) напряженности поля. Я правильно понимаю, что это феноменологический факт, не выводимый теоретически?
Выводимый в качестве приближенного для слабых полей. Величина проводимости также считабельна, но уже в микроскопических квантовых науках.
-- 29.03.2019, 00:40 --Если вся энергия уходит в случайное движение электрона, то надо его ещё разделять с дрейфом. Разогрев слишком большой. В общем, поэтому и попросил показать.
А тут такая забавная штука. Закон Ома выводится в приближении упругих столкновений (приближении времени релаксации), а закон Джоуля-Ленца нет. Для него надо учитывать неупругость. Где-то про это тема была.