Для движения однородного диска по наклонной плоскости (угол наклона

) получил следующее выражение:

(ось

направлена вдоль наклонной плоскости). Смущает то, что при

тело будет падать медленнее, чем если бы оно падало свободно. Ошибся ли я в выводе уравнения движения? Или же тут дело в том, что при вертикальном расположение плоскости диск будет проскальзывать и мое уравнение не применимо?
Именно. Первое уравнение получено при условии отсутствия проскальзывания (можно еще найти, какой минимальный коэффициент трения для этого необходим).
Я имел ввиду, что если забить на плоскость, а просто взять диск, раскрутить его, а потом отпустить. Будет ли он падать медленнее своего нераскрученного состояния?
На раскрученный диск будет действовать другая сила со стороны воздуха, чем на нераскрученный. Кроме того, если диск металлический, в раскрученном будут наводиться другие токи при взаимодействии с магнитным полем Земли

.
Если же все это не учитывать, то разницы не будет.
Ваше решение соответствует случаю, когда на диск намотана легкая нить, верхний конец которой закреплен. Тогда, действительно, будет падать с ускорением

.