Схема решения может быть такой.
1) Данную систему заменяем равносильной, в которой первое уравнение является разностью заданных уравнений, а второе — суммой. Всё переносим в левую часть. Второе уравнение, как уже замечено, симметрическое.
2) В первом уравнении левая часть разлагается на два множителя. Первый — это
, а второй является симметрическим многочленом. Поэтому данная система распадается на две системы, одна из которых (с уравнением
) сводится к легко решаемому уравнению третьей степени, а вторая симметрическая.
3) В симметрической системе делаем стандартную замену неизвестных
,
, и получаем систему из двух уравнений, одно из которых второй степени, а другое — третьей.
4) Выражаем
из уравнения второй степени и подставляем в уравнение третьей степени. В полученном уравнении один корень легко подбирается, после чего всё легко решается.