Ну кстати в общем случае на чертежи/схемы наезжать не нужно: они могут быть видом доказательства, если правила такого графического доказательства и того, как должны образовываться чертежи, заданы, и чертёж достаточно аккуратный (аналогично тому, как текст предполагаемого доказательства должен быть достаточно понятным, чтобы разобрать его на вполне определённые части и установить, доказывает он что-то или нет). Пример — графическая тензорные обозначения Пенроуза, позволяющие доказывать какие-то тензорные равенства. Можно даже к геометрии это применить для некоторого подмножества чертежей, и может даже кто-то что-нибудь в таком духе формализовал, но сам такого не видел.
И естественно разделяю сомнения как же определить даже не прямую в топологическом пространстве а аналог подпространства меньшей размерности, т.е плоскости для 3-мерн евклидового
Стойте. Вы же синтетической евклидовой геометрией в этой теме интересовались — а там прямые и плоскости не надо определять, они уже входят в язык, а аксиомы определяют, что это такое. Если же заниматься геометрией, исходя из линейной алгебры, то можно ни о каких произвольных топологических пространствах не думать, так как евклидовы пространства — в каком-то смысле самые хорошие. Прямая и плоскость там соответственно одномерное и двумерное подпространство. У топологического пространства тоже есть подпросранства, но не всегда определима размерность.