В русскоязычной Википедии написано:
Вообще я думал, что ссылаться на цитаты из википедии здесь, как минимум, не принято. Поэтому сначала привёл оттуда лишь формальное утверждение (формулы всё же достаточно строгие). Далее оперировал данными Куратовского. Про Цермелло комментировал в ответ в том числе на ваш вопрос, но вы тогда никаких противоречий не заметили. Далее - просто обычные воспоминания без повторного чтения, которые меня подвели, да.
Но если использовать цитаты из википедии, то там приводится ответ Рассела Фреге:
Цитата:
Я испытал трудности только в одном месте. Вы утверждаете (стр. 17), что функция может сама выступать в качестве неизвестного. Раньше я тоже так считал. Но теперь такой взгляд мне кажется сомнительным из-за следующего противоречия. Пусть w предикат: «быть предикатом, который не приложим к самому себе». Может ли w быть приложим к самому себе? Из любого ответа следует обратное. Следовательно, мы должны заключить, что w — не предикат. Аналогично не существует класса (как целого) тех классов, которые, взятые как целое, не принадлежат себе. Отсюда я заключаю, что иногда определённое множество не формирует целостного образования.
Из ответа следует, что Рассел выделил тот же класс логических заключений, что и традиционно используемое "множество всех множеств, не входящих в себя" (оно короче и яснее). Но в конце цитаты мы видим - "Отсюда я заключаю, что иногда определённое множество не формирует целостного образования", то есть противоречия опять нет, но есть обоснованное утверждение об отказе включать в том числе во множество всех множеств, не включающих себя, само это множество.
Собственно здесь Рассел просто уходит от безоговорочного использования слова "все". И если на примере "противоречивого" множества всех множеств, не включающих себя, начать добавлять вполне строгие правила, то мы так же увидим, что парадокса нет, а есть только лишь следование правилам, исключающее ту или иную конструкцию, либо показывающих некорректность подхода "что бы все". Так можно задать правила:
1) Множества, принадлежащие рассматриваемому множеству, не включают себя в качестве элементов.
2) Рассматриваемое множество включает все множества, соответствующие правилу 1.
Тогда имеем необходимость включить рассматриваемое множество само в себя, но после включения оно перестаёт соответствовать правилу №1, только это не приводит к противоречию, ведь нет правила, запрещающего включать помимо множеств из правила №1 ещё и другие множества.
Если добавить правило №3:
3) Рассматриваемое множество не включает множеств, не удовлетворяющих правилу №1
То в момент включения станет ясно, что правило №3 не выполнено и такое включение некорректно, а значит производить его нельзя. Далее мы должны вспомнить правило №2 и попытаться соответствовать ему, но мы уже получили отрицательный ответ при такой попытке. Из этого можно сделать разные выводы, но на мой взгляд вывод здесь простой - мы сами насочиняли правила, которые противоречат друг другу. То есть опять нет никакого парадокса кроме нашей собственной невнимательности, позволившей нам требовать одновременно "быть горячим и холодным".
Со всех точек зрения, которые я имел возможность здесь представить, противоречия Рассела нет, но есть (по википедии не принимаемая даже самим Расселом) наша собственная невнимательность к рассуждениям.