2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу 1, 2, 3  След.
 
 Совместное распределение минимумов
Сообщение20.01.2019, 00:40 


20/01/19
22
Найдите совместное распределение минимумов
$m(n) = \min \lbrace{X_1,…,X_n}\rbrace и $m(n+1) = \min \lbrace{X_1,…,X_n, X_n+1}\rbrace,
где $X_1,X_2,…$ - независимые с.в. с непрерывной ф.р. $F(x)$.
Вопросы:
Т.е. получается, я ищу
$P(m(n),m(n+1))=\min \lbrace{X_1,…,X_n}\rbrace \cdot m(n+1) = \min \lbrace{X_1,…,X_n, X_{n+1}}\rbrace=\min \lbrace{2X_1...2X_n,X_{n+1}}\rbrace, т.к. они независимы?


И что в данном примере определяют минимумы? Т.е. нам же неизвестны $X_1...X_n,X_{n+1}$
И если это не порядковые статистики, можем ли мы говорить, что
$X_{1,n}=\min \lbrace{X_1,…,X_n}\rbrace=\min \lbrace{X_1,…,X_n, X_{n+1}}\rbrace?
или же будет $F_{1:n}=1-(1-F(x)^n)\cdot 2?
Простите, понимание на 0.

 Профиль  
                  
 
 Posted automatically
Сообщение20.01.2019, 00:58 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение20.01.2019, 02:43 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение20.01.2019, 03:01 
Заслуженный участник
Аватара пользователя


16/07/14
9215
Цюрих
Ну начните с выписывания определений. Что, например, такое ваше $P(m(n), m(n+1))$? Можете ли вы явно выписать распределение минимума первых $n$ величин?

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение20.01.2019, 03:59 


20/01/19
22
mihaild в сообщении #1370098 писал(а):
Ну начните с выписывания определений. Что, например, такое ваше $P(m(n), m(n+1))$?

вероятность события $P(X<x)$? не знаю, как перенести на данную ситуацию. $P(X_n<x,X_{n+1}<x)$?
Цитата:
Можете ли вы явно выписать распределение минимума первых $n$ величин?

Нет, я не знаю, как это сделать и где отыскать. Из того, что знаю:
$F_n(x)=F_{x_1}+...+F_{x_n}-F_{x_1...x_n}$?

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение20.01.2019, 04:06 
Заслуженный участник
Аватара пользователя


22/06/12
2129
/dev/zero
idcradle, приведите определение совместной функции распределения двух случайных величин в виде $F(x, y) = \ldots$

-- 20.01.2019 в 04:55 --

Да, а после того, как приведёте, в контексте этого определения тыкните пальцем в случайные величины, которые вам надо проанализировать. Тогда вы хотя бы поймёте, что нужно искать.

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение20.01.2019, 12:25 


20/01/19
22
StaticZero в сообщении #1370109 писал(а):
idcradle, приведите определение совместной функции распределения двух случайных величин в виде $F(x, y) = \ldots$

Как $F(x,y)=P((X<x)(Y<y))$?

Цитата:
Да, а после того, как приведёте, в контексте этого определения тыкните пальцем в случайные величины, которые вам надо проанализировать. Тогда вы хотя бы поймёте, что нужно искать.


В контексте данного определения проанализировать нужно $X,Y$
***
как перенести данное знание на мой конкретный случай решительно не понимаю
$F(x_1,...,x_{n+1})=P((X_1<x_1)...(X_{n+1}<x_{n+1}))$?

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение20.01.2019, 12:40 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
idcradle в сообщении #1370139 писал(а):
как перенести данное знание на мой конкретный случай решительно не понимаю

А что непонятно? что такое $X$, что такое $Y$, подставили, думаете дальше. Думаете, а не торопитесь сюда писать. :)

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение20.01.2019, 13:13 


20/01/19
22
Otta в сообщении #1370142 писал(а):
idcradle в сообщении #1370139 писал(а):
как перенести данное знание на мой конкретный случай решительно не понимаю

А что непонятно? что такое $X$, что такое $Y$, подставили, думаете дальше. Думаете, а не торопитесь сюда писать. :)

(Оффтоп)

по исходу 3 дня, я уже готов согласиться с тем, что думать нечем
такое впечатление, что я отталкиваюсь от воздуха

Непонятно как искать. Если для ф.р. 2х величин - это двойной интеграл, то что будет в данном случае и как его найти? Или же, с учетом того, что мы ищем распр минимумов нужно просто взять $F(x)=P(X_1<x_1)$?

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение20.01.2019, 14:58 


20/01/19
22
Цитата:
Непонятно как искать. Если для ф.р. 2х величин - это двойной интеграл, то что будет в данном случае и как его найти? Или же, с учетом того, что мы ищем распр минимумов нужно просто взять $F(x)=P(X_1<x_1)?

Или же, мне кажется, что правильнее будет искать как:
$F_{X_{1,n}:X_{1,n+1}}(x,y)=P((X_{1,n}<x)(X_{1,n+1}<y))$, тогда ищем как:
$\sum\limits_{s=1}^{n}\sum\limits_{r=1}^{s}\frac{(n+1)!}{r!(s-r)!(n-s)!}(F(x))^r(F(y)-F(x))^{s-r}(1-F(y))^{n-s}$
Верен ли ход рассуждений? И как посчитать данный момент? Можно ли говорить о том, что $n=2$,т.к. ф-я р. от 2х величин? ведь ищем минимумы
И если распр равномерное, то $F(x)=x$, можно здесь воспользоваться также этим?

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение20.01.2019, 15:35 
Заслуженный участник
Аватара пользователя


22/06/12
2129
/dev/zero
Оуч...

В условии просят взять две случайные величины $\xi = \min (X_1, \ldots, X_n)$ и $\eta = \min (X_1, \ldots, X_{n+1})$. Потом найти $F(x, y) = \mathsf P(\xi < x, \eta < y)$. Со второй частью марлезонского балета вы, конечно, справились, но вот случайные величины не нашли...

Можно, конечно, задать вопрос "а что такое вообще событие", чтоб вы ещё порылись в учебнике, но я думаю, не нужно.

Возьмём для начала две независимые одинаково распределённые случайные величины $X_1$ и $X_2$, функция распределения $F(x)$ у каждой. Если $x_1, x_2$ есть реализации этих случайных величин, то можно рассмотреть пару этих реализаций как точку на $\mathbb R^2$. Возьмём теперь много реализаций этих пар. Получится много точек на $\mathbb R^2$. Для некоторых точек условие $\min (x_{1i}, x_{2i}) < x$ выполнено (здесь $i$ --- номер точки), для каких-то не выполнено.

Для вас задачка попроще: на плоскости $\mathbb R^2$ нарисовать область, попадание точки в которую удовлетворяет условию $\min (\text{координата1}, \text{координата2}) < x$, где $x$ --- заданное число. Глядя на эту картинку, определите область, где $\min (\text{координата1}, \text{координата2}) \geqslant x$ (не путайте здесь $x$ и координату, $x$ это параметр такой).

-- 20.01.2019 в 15:39 --

idcradle в сообщении #1370152 писал(а):
И если распр равномерное, то F(x)=x, можно здесь воспользоваться также этим?

В исходной формулировке слово "равномерный" не было, и ограничений на область значений случайных величин тоже не было, поэтому 1) $F(x) = x$ не функция распределения 2) равномерное распределение на всей оси --- ну вы поняли...

 Профиль  
                  
 
 Posted automatically
Сообщение20.01.2019, 17:56 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы - не надо вставлять лишние доллары внутрь формулы.

Заодно верхний предел суммирования поправьте, это все-таки математика, а не программирование, и $n=n+1$ тут несколько неуместно.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение20.01.2019, 22:49 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение21.01.2019, 00:13 


20/01/19
22
Цитата:
Возьмём для начала две независимые одинаково распределённые случайные величины $X_1$ и $X_2$, функция распределения $F(x)$ у каждой. Если $x_1, x_2$ есть реализации этих случайных величин, то можно рассмотреть пару этих реализаций как точку на $\mathbb R^2$. Возьмём теперь много реализаций этих пар. Получится много точек на $\mathbb R^2$. Для некоторых точек условие $\min (x_{1i}, x_{2i}) < x$ выполнено (здесь $i$ --- номер точки), для каких-то не выполнено.

Для вас задачка попроще: на плоскости $\mathbb R^2$ нарисовать область, попадание точки в которую удовлетворяет условию $\min (\text{координата1}, \text{координата2}) < x$, где $x$ --- заданное число
.
Вот это я все понимаю.
Цитата:
Глядя на эту картинку, определите область, где $\min (\text{координата1}, \text{координата2}) \geqslant x$ (не путайте здесь $x$ и координату, $x$ это параметр такой).

Вот это понимаю не особо.
Но как все это применить к данных входным параметрам не понимаю как.

 Профиль  
                  
 
 Re: Совместное распределение минимумов
Сообщение21.01.2019, 00:26 


20/03/14
12041
idcradle в сообщении #1370331 писал(а):
Вот это я все понимаю.

Хорошо. Область нарисуйте.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 37 ]  На страницу 1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group