Мне в последнее время кажется, что общую топологию с азами теории метрических пространств нужно читать не после вещественного анализа и не до вещественного анализа, а параллельно
Я в позапрошлом году ездил в НМУ из Питера, но учился на экономиста. Там так читали (в НМУ). Курс анализа Львовского тоже так и выстроен. Решил бросить экономику, но год пришлось потерять, в прошлом году не мог учиться, пришлось заниматься совсем другими вещами, так сказать. В этом году переехал в Москву, заново начал учиться. Читают в этом году анализ ещё абстрактнее. Метрические пространства, компактность, связность, полнота - это то, с чего начался курс. Впрочем, также и в учебнике С.М. Львовского. Отличие в том, что преподаватель так и сказал, что мы будем всё определять и доказывать по возможности так, чтобы это работало для Банаховых пространств. Читается, в сущности, "малый функан" (хотя, я не знаю функан, но какие-то вещи приходится смотреть в Колмогорове-Фомине, впрочем, кажется, что это элементарная книжка, раз я могу её открывать, условно, с середины, не зная функана). Нормированные пространства ввели уже в первом семестре.Во втором семестре будет сразу мера и интеграл Лебега, без Римана, судя по всему.
По теме. При таком подходе, разумеется, все теоремы о промежуточном значении и о наибольшем значении получаются из компактности и связности отрезка и связности/компактности непрерывного образа. Всё сводится к доказательству соответствующих теорем для отрезка, которые представляют из себя упражнения на существование
и
для ограниченных подмн-в
(причём есть листочек, где и это надо доказать, а определялись вещественные числа конструкцией пополнения
). На произвольные размерности это обобщается использованием теоремы о произведении компактов. Для конечных произведений это совсем тривиально. Интуитивно же компактность вроде понятна, когда поработаешь с ней, с секвенциальной компактностью, увидишь, как в ней "замыкаются" последовательности. Плюс компакт - "замкнут по размеру". Ну то есть, например, полнота и вполне ограниченность - характеризуют компаткы в метрических пространствах. Связность интуитивно совсем понятна. Правда, эта "понятность" уточняется, когда встречаешься со связными, но не линейно связными пространствами - соответствующие задачи в курсе были.
Параллельно в первом же семестре читается алгебраическая топология. Там всё серьёзно. С этим я не совсем успел, решил до февраля изучить страниц 120 книжки Спеньера по алгебраической топологии.
Ну и алгебра. Которую читает Г.Б. Шабат - первый научный руководитель Владимира Воеводского. На алгебре полсеместра было уделено теории категорий. Теорию Галуа я сам решил заботать, так как уже по Ленгу до этого места дошёл, а там в первом листке задачка была с двумя звёздочками:
"при каких рациональных - корень некоторого многочлена второй степени с целыми коэффициентами, третьей?" Это ещё больше спровоцировало, потому как показалось, что здесь как раз будет это применимо - и действительно решил и сдал. Кроме категорий в первом семестре были группы. В основном речь шла о конечных группах. Последняя лекция по теоремам Силова. В целом курс простой на самом деле был, потому что в теории категорий мало теорем. А группы я по Ленгу уже изучал. Однако Шабат уже читал курс в НМУ, на сайте можно посмотреть программу его прошлого курса (тот курс начался осенью 2015). Программа первого семестра этого года оказалась очень схожа с программой первого семестра того года. Отсюда можно предположить, что и второй семестр будет похож. Там много всего, есть например тема:
"Категории предпучков на окольцованных пространствах" и похожие. Вот ссылка:
https://ium.mccme.ru/s16/algebra2.pdf. Я не знаю, что это. Я не знаю, что даже и ботать надо будет. Нужна какая-нибудь книжка по (ко)гомологиям. Гельфанд-Манин, может быть. Не знаю пока. Но Ленга всё равно дочитаю вместе с тем.
Конечно, такие курсы рассчитаны на тех, кто имеет некую базу и готов очень много самостоятельно уделять время изучению литературы. Линейная алгебра, например, совсем необходима, но её нет у нас в курсе. Курс в НМУ полностью определяет преподаватель. Г.Б. Шабат посоветовал всем учебник Кострикина-Манина (Ю.И. Манин, к слову, учитель уже Г.Б. Шабата), ну я его и так читаю. Про Ленга он мне сказал, что учил алгебру по этой книжке, когда сам был студентом, намекая на то, что учебник устарел (
"так что книжка эта... весьма почтенная"). На лекциях лекторы ссылаются на то, что, мол, вот в школе было так, а в науке так, разыгрывая ситуацию, будто сидят люди, в сентябре услыхавшие про комплексные числа или про понятие топологического пространства. На деле это всё рассчитано на бывших (впрочем, есть и нынешние старшеклассники из 57) матшкольников или людей, учащихся в каком-то ещё серьёзном месте, или даже закончивших такое место. И без каких-либо оглядок в сторону приложений, целей нематематических курсов, а также гос. стандартов. Преподаватель сам выбирает, какая программа лучше всего поведёт студентов в науку, и он в своём выборе свободен.
Возвращаясь к исходной теме поста, выбор, как читать анализ в первом семестре, получается именно такой, да (точнее - даже сильнее).