2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Непростое неравенство
Сообщение01.11.2018, 10:16 
Заслуженный участник
Аватара пользователя


26/02/14
609
so dna
Cap в сообщении #1347723 писал(а):
Может использовать BW?
arqady в сообщении #1347882 писал(а):
Пробовал. У меня ничего не получилось.
И тем не менее BW доказывает данное неравенство.

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение01.11.2018, 11:27 
Аватара пользователя


14/12/17
1532
деревня Инет-Кельмында
Rak so dna
Cap
arqady

Что такое BW? Обыскался уже, спасите мой день.

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение01.11.2018, 11:50 
Аватара пользователя


14/03/18
87
eugensk в сообщении #1350735 писал(а):
Rak so dna
Cap
arqady

Что такое BW? Обыскался уже, спасите мой день.


https://brilliant.org/discussions/threa ... ffalo-way/

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение01.11.2018, 11:57 
Аватара пользователя


14/12/17
1532
деревня Инет-Кельмында
Cap
Спасибо!

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 06:09 
Заслуженный участник


26/06/07
1929
Tel-aviv
eugensk в сообщении #1350735 писал(а):
Rak so dna
Cap
arqady

Что такое BW? Обыскался уже, спасите мой день.

Можно ещё здесь посмотреть.

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 07:21 
Заслуженный участник


26/06/07
1929
Tel-aviv
Rak so dna в сообщении #1350720 писал(а):
И тем не менее BW доказывает данное неравенство.

Пусть $x=\min\{x,y,z\}$, $y=x+u$, $z=x+v$.
Тогда нам нужно доказать, что:
$$72(u^2-uv+v^2)x^5+12(9u^3+46u^2v-43uv^2+9v^3)x^4+$$
$$+8(27u^4+62u^3v+63u^2v^2-116uv^3+27v^4)x^3+$$
$$+(90u^5+442u^4v+508u^3v^2-256u^2v^3-244uv^4+90v^5)x^2+$$
$$+uv(130u^4+351u^2v-135uv^2+50v^4)x+5u^2v^2(13u^3+13u^2v-13uv^2+5v^3)\geq0.$$
Как Вы продолжаете?

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 10:24 
Заслуженный участник
Аватара пользователя


26/02/14
609
so dna
arqady Обозначим $P_+$ - множество всех однородных многочленов степени $7$ от переменных $a,b,c$ с неотрицательными коэффициентами. Надо доказать
$f(a,b,c)=18a^3(13b^2+5c^2)(13c^2+5a^2)+
          18b^3(13c^2+5a^2)(13a^2+5b^2)+
          18c^3(13a^2+5b^2)(13b^2+5c^2)-
          (a+b+c)(13a^2+5b^2)(13b^2+5c^2)(13c^2+5a^2)\geqslant0$

Тогда $f(a,a+b+c,a+b) \in P_+$ (Выписывать сами многочлены не буду) Осталось показать $g(a,b,c)=f(a,a+b,a+b+c)\geqslant0$.
Тогда $g(a,b+2c,c) \in P_+$ Осталось показать $q(a,b,c)=g(a,b,\frac{b}{2}+c)\geqslant0$. Тогда:
$\begin{cases}
q(a,a+b,a+b+c) \in P_+ \\
q(a,a+b+c,a+b) \in P_+ \\
q(a+b,a,a+b+c) \in P_+ \\
q(a+b,a+b+c,a) \in P_+
\end{cases}$
Осталось показать, что $\begin{cases}
r_1(a,b,c)=q(a+b+c,a,a+b) \geqslant0 \\
r_2(a,b,c)=q(a+b+c,a+b,a) \geqslant0
\end{cases}$
Тогда:
$\begin{cases}
r_{1,2}(a,a+b,a+b+c) \in P_+ \\
r_{1,2}(a,a+b+c,a+b) \in P_+ \\
r_{1,2}(a+b,a,a+b+c) \in P_+ \\
r_{1,2}(a+b,a+b+c,a) \in P_+ \\
r_{1,2}(a+b+c,a,a+b) \in P_+ \\
r_{1,2}(a+b+c,a+b,a) \in P_+ 
\end{cases}$

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 14:29 
Заслуженный участник


26/06/07
1929
Tel-aviv
А я выпишу:
$$\frac{1}{5}f(a,a+u,a+u+v)=72(u^2+uv+v^2)a^5+12(21u^3-13u^2v-16uv^2+9v^3)a^4+$$
$$+8(63u^4-52u^3v-123u^2v^2-8uv^3+103uv^4+27v^4)a^3+$$
$$+2(315u^5+82u^4v-412u^3v^2-166u^2v^3+103uv^4+45v^5)a^2+$$
$$+(396u^5+542u^4v+41u^3v^2-40u^2v^2+115uv^4+50v^5)ua+5(18u^3+2u^2v+2uv^2+5v^3)(u+v)^2u^2.$$
Мы видим, что $$21u^3-13u^2v-16uv^2+9v^3,$$
$$63u^4-52u^3v-123u^2v^2-8uv^3+103uv^4+27v^4$$ и $$315u^5+82u^4v-412u^3v^2-166u^2v^3+103uv^4+45v^5$$ могут быть отрицательными.

Что делать дальше?

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 15:15 
Заслуженный участник
Аватара пользователя


26/02/14
609
so dna
arqady я всё написал: обозначаем $g(a,b,c)=f(a,a+b,a+b+c)$ и продолжаем доказывать методом BW неотрицательность этого многочлена. Для $b\geqslant 2c$ проверяем, что у $g(a,b+2c,c)$ неотрицательные коэффициенты. Для $b \leqslant 2c$ рассматриваем $q(a,b,c)=g(a,b,\frac{b}{2}+c)$ и доказываем BW неотрицательность многочлена $q(a,b,c)$ и т.д. по тексту.

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 18:13 
Заслуженный участник


26/06/07
1929
Tel-aviv
Rak so dna в сообщении #1351163 писал(а):
Для $b\geqslant 2c$ проверяем, что у $g(a,b+2c,c)$ неотрицательные коэффициенты.

Почему это достаточно для доказательства, что $f(a,a+b,a+b+c)\geq0$ при $b\geq2c$?

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 19:58 
Заслуженный участник
Аватара пользователя


26/02/14
609
so dna
arqady давайте по порядку (все переменные по умолчанию считаем неотрицательными):
1. Если $g(a,2c+x,c)$ имеет неотрицательные коэффициенты, то он неотрицателен.
2. $g(a,2c+x,c)\Leftrightarrow g(a,b,c)$ при $b\geqslant 2c$
3. $f(a,a+b,a+b+c)=g(a,b,c)$
Что мы имеем:
$g(a,2c+b,c)\geqslant 0$, а значит $g(a,2c+x,c)\geqslant 0$ из чего следует, что $g(a,b,c)\geqslant 0$ при $b\geqslant 2c$ а значит и $f(a,a+b,a+b+c)\geqslant 0 $ при $b\geqslant 2c$.

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 20:57 
Заслуженный участник


26/06/07
1929
Tel-aviv
Rak so dna
Для $b\geq2c$ проверил. Всё действительно получается, как Вы говорите.
Но для $b\leq2c$ получаем $$\frac{32}{5}g\left(a,u,\frac{u}{2}+v\right)=\frac{32}{5}f\left(a,a+u,a+\frac{3}{2}u+v\right)=$$
$$=576(7u^2+8uv+4v^2)a^5+48(93u^3-178u^2v-20uv^2+72v^3)a^4+$$
$$+16(111u^4-2680u^3v-1512u^2v^2+736uv^3+432v^4)a^3+$$
$$+2(7683u^5-12446u^4v-14408u^3v^2+4880u^2v^3+6896uv^4+1440v^5)a^2+$$
$$+4(5448u^5+5009u^4v+1728u^3v^2+2520u^2v^3+1920uv^4+400v^5)ua+$$
$$+5u^2(3u+2v)^2(161u^3+62u^2v+76uv^2+40v^3).$$
И что теперь? :?

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 21:12 
Заслуженный участник
Аватара пользователя


26/02/14
609
so dna
arqady
Rak so dna в сообщении #1351071 писал(а):
Осталось показать $q(a,b,c)=g(a,b,\frac{b}{2}+c)\geqslant0$. Тогда:
$\begin{cases}
q(a,a+b,a+b+c) \in P_+ \\
q(a,a+b+c,a+b) \in P_+ \\
q(a+b,a,a+b+c) \in P_+ \\
q(a+b,a+b+c,a) \in P_+
\end{cases}$
Осталось показать, что $\begin{cases}
r_1(a,b,c)=q(a+b+c,a,a+b) \geqslant0 \\
r_2(a,b,c)=q(a+b+c,a+b,a) \geqslant0
\end{cases}$
Тогда:
$\begin{cases}
r_{1,2}(a,a+b,a+b+c) \in P_+ \\
r_{1,2}(a,a+b+c,a+b) \in P_+ \\
r_{1,2}(a+b,a,a+b+c) \in P_+ \\
r_{1,2}(a+b,a+b+c,a) \in P_+ \\
r_{1,2}(a+b+c,a,a+b) \in P_+ \\
r_{1,2}(a+b+c,a+b,a) \in P_+ 
\end{cases}$

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение02.11.2018, 21:44 
Заслуженный участник


26/06/07
1929
Tel-aviv
Сейчас я по крайней мере понял, что Вы делаете. Вы всё время переобозначаете $a$, $b$ и $c$ и поэтому мне было трудно въехать. Проверю.
Случаи $a=\min\{a,u,v\}$ and $u=\min\{a,u,v\}$ осилил. Действително, всё верно.

Последний случай, когда $a=\max\{a,u,v\}$, а это, собственно, 12 случаев, - когда-нибудь потом. Какое-то садо-мазохистское у Вас $BW$ получается. :mrgreen:

 Профиль  
                  
 
 Re: Непростое неравенство
Сообщение03.11.2018, 10:49 
Заслуженный участник
Аватара пользователя


26/02/14
609
so dna
arqady в сообщении #1351248 писал(а):
...and $u=\min\{a,u,v\}$ осилил
Скорее всего Вы имели ввиду
$
u\leqslant a\leqslant v, v\leqslant a\leqslant u
$
arqady в сообщении #1351248 писал(а):
Какое-то садо-мазохистское у Вас $BW$ получается. :mrgreen:
Ну, я лишь отметил работоспособность метода, а уж подробностей - это Вам захотелось :mrgreen: :mrgreen:
Спасибо за Ваше терпение в проверке.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 40 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group