1. какие это такие одинаковые методы применяются в интерполяции и аппроксимации? (приведите примеры конкретных методов)
2. данные какого характера используются в интерполяции, а какого - в аппроксимации? (какие такие специфические требования эти методы предъявляют к данным)
Прочитайте внимательнее:
Стоит лишь начать задавать вопросы, а чем экстраполяция отличается от интерполяции, то оказывается человек-то и не понимает разницы: потому что у них одинаковые методы, а отличаются они лишь характером данных.
Есть два противопоставления:
1.
экстраполяция vs интерполяция
2. аппроксимация vs интерполяция
Любопытно, а смогут ли предсказать ваши методы экстраполяции, какое слово я напишу в следующем сообщении мужду двумя *...*? Это принципиальная разница. Экстраполяция пытается предсказать будущее и в этом вся фишка. Когда будущее будет удачно предсказано?
Скажем последовательность
можно продолжить бесконечным числом способов. Вопрос как выбрать правильное правило (функцию) экстраполяции?
Вот на этой разнице нейросетки и срезаются.
Вы поставили мысленный эксперимент, но не пытаетесь его объяснить и описать реальные результаты. Лишь голословно утверждаете, что нейросетки не могут.
А человек-то может? он тоже не может.
Я лично не вижу никаких проблем в том, чтобы научить нейросети экстраполировать. Заметьте Ваша ошибка заключается в том, что вы считаете способность экстраполировать необходимым врождённым свойством. А на самом деле - это приобретаемое свойство. Причина: чтобы экстраполировать, надо переносить знания из одной области в другую:
Цитата:
Экстраполяция — это логико-методологическая процедура распространения (переноса) выводов, сделанных относительно какой-либо части объектов или явлений на всю совокупность (множество) данных объектов или явлений.
То есть для экстраполяции надо сначала чему-то научиться (развить детекторы признаков в скрытых слоях), а потом пытаться эти знания применить. А теперь вспомните хотя бы архитектуру классического многослойного перцептрона и поймёте, что нет ничего невозможного.
Уверяю, нейросети могут научиться переносить знания из области в область. Для этого нужно, чтобы нейросеть работала в двух или трёх разнотипных областях.